Irving M Shapiro

Thomas Jefferson University, Filadelfia, Pennsylvania, United States

Are you Irving M Shapiro?

Claim your profile

Publications (267)1157.91 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolyl-4-hydroxylase (PHD) proteins are key in sensing tissue hypoxia. In nucleus pulposus (NP) cells, our previous work has demonstrated that PHD isoforms have a differential contribution in controlling HIF-α degradation and activity. Recently we have shown that a regulatory relationship exists between PHD3 and inflammatory cytokines in NP cells. With respect to PHD2, the most abundant PHD isoform in NP cells, very little is known concerning its function and regulation under inflammatory conditions that characterize intervertebral disc degeneration. Here, we show that PHD2 is a potent regulator of the catabolic activities of TNF-α; silencing of PHD2 significantly decreased TNF-α-induced expression of catabolic markers including SDC4, MMP-3 and -13 and ADAMTS5 as well as several inflammatory cytokines and chemokines, while partially restoring aggrecan and collagen II expression. Use of NF-κB reporters with ShPHD2, SiHIF-1α, as well as p65-/-, PHD2-/- and PHD3-/- cells show that PHD2 serves as a co-activator of NF-κB/p65 signaling in HIF-1 independent fashion. Immunoprecipitation of endogenous and exogenously expressed tagged proteins as well as fluorescence microscopy indicates that following TNF-α treatment, PHD2 interacts with, and co-localizes with, p65. Conversely, loss-of-function experiments using lentivirally-delivered Sh-p65, Sh-IKKβ and NF-κB inhibitor confirmed that cytokine-dependent PHD2 expression in NP cells requires NF-κB signaling. These findings clearly demonstrate that PHD2 forms a regulatory circuit with TNF-α via NF-κB and thereby plays an important role in enhancing activity of this cytokine. We propose that during disc degeneration PHD2 may offer a therapeutic target to mitigate the deleterious actions of TNF-α, a key pro-inflammatory cytokine. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    The Journal of biological chemistry. 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antibiotic prophylaxis is standard for patients undergoing surgical procedures, yet, despite the wide use of antibiotics, breakthrough infections still occur. In the setting of total joint arthroplasty, such infections can be devastating. Recent findings have shown that synovial fluid causes marked staphylococcal aggregation, which can confer antibiotic insensitivity. We therefore ask whether clinical samples of synovial fluid that contain pre-operative prophylactic antibiotics can successfully eradicate a bacterial challenge by pertinent bacterial species. This study demonstrates that pre-operative prophylaxis with cefazolin results in high antibiotic levels. Furthermore, we show that even with antibiotic concentrations that far exceed expected bactericidal levels, Staphylococcus aureus added to the synovial fluid samples are not eradicated and are able to colonize model implant surfaces, i.e., titanium pins. Based on these studies, we suggest that current prophylactic antibiotic choices, despite high penetrance into synovial fluid, may need to be re-examined. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Antimicrobial Agents and Chemotherapy 01/2015; · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to investigate whether expression of xylosyltransferase-1 (XT-1), a key enzyme in glycosaminoglycan biosynthesis, is responsive to disk degeneration and to inhibition by the inflammatory cytokines tumor necrosis factor α and IL-1β in nucleus pulposus (NP) cells. Analysis of human NP tissues showed that XT-1 expression is unaffected by degeneration severity; XT-1 and c-Jun, c-Fos, and Sp1 mRNA were positively correlated. Cytokines failed to inhibit XT-1 promoter activity and expression. However, cytokines decreased activity of XT-1 promoters containing deletion and mutation of the -730/-723 bp AP-1 motif, prompting us to investigate the role of AP-1 and Sp1/Sp3 in the regulation of XT-1 in healthy NP cells. Overexpression and suppression of AP-1 modulated XT-1 promoter activity. Likewise, treatment with the Sp1 inhibitors WP631 and mithramycin A or cotransfection with the plasmid DN-Sp1 decreased XT-1 promoter activity. Inhibitors of AP-1 and Sp1 and stable knockdown of Sp1 and Sp3 resulted in decreased XT-1 expression in NP cells. Genomic chromatin immunoprecipitation analysis showed AP-1 binding to motifs located at -730/-723 bp and -684/-677 bp and Sp1 binding to -227/-217 bp and -124/-114 bp in XT-1 promoter. These results suggest that XT-1 expression is refractory to the disease process and to inhibition by inflammatory cytokines and that signaling through AP-1, Sp1, and Sp3 is important in the maintenance of XT-1 levels in NP cells. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
    American Journal Of Pathology 12/2014; · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As peri-prosthetic infection is one of the most devastating complications associated with implant placement, we have reasoned that such infection can be largely subverted by development of antibacterial implants. Our previous work demonstrated that covalent coupling of vancomycin to titanium alloy prevented colonization by the Gram-positive pathogens, Staphylococcus aureus and Staphylococcus epidermidis. Some orthopedic devices, including permanent prosthesis anchors, and most dental implants are transcutaneous or transmucosal and can be prone to colonization by Gram-negative pathogens. We report here the successful covalent coupling of the broad-spectrum antibiotic, tetracycline (TET), to titanium surfaces (Ti-TET) to retard Gram-negative colonization. Synthetic progress was followed by changes in water contact angle, while the presence of TET was confirmed by immunofluorescence. Ti-TET actively prevented colonization in the presence of bathing Escherichia coli, both by fluorescence microscopy and direct counting. Finally, the Ti-TET surface supported osteoblastic cell adhesion and proliferation over a 72-h period. Thus, this new surface offers a powerful means to protect transcutaneous implants from adhesion of Gram-negative pathogens, decreasing the need for replacement of this hardware. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 11/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Degeneration of the intervertebral disc is characterized by changes in proteoglycan status, loss of bound water molecules, decreased tissue osmotic pressure and a resulting mechanical failure of the disc. A similar spectrum of changes is evident in osteoarthritic articular cartilage. When healthy, resident cells in these skeletal tissues respond to applied mechanical loads by regulating their own osmotic state and the hydration of the extracellular matrix. The transcription factor Tonicity-Responsive Enhancer Binding Protein (TonEBP or NFAT5) is known to mediate the osmoadaptive response in these and other tissues. While the molecular basis of how osmotic loading controls matrix homeostasis is not completely understood, TonEBP regulates the expression of aggrecan and β1,3-glucoronosyltransferase in nucleus pulposus cells, in addition to targets that allow for survival under hypertonic stress. Moreover, in chondrocytes, TonEBP controls expression of several collagen subtypes and Sox9, a master regulator of aggrecan and collagen II expression. Thus, TonEBP-mediated regulation of the matrix composition allows disc cells and chondrocytes to modify the extracellular osmotic state itself. On the other hand, TonEBP in immune cells induces expression of TNF-α, ΙL-6 and MCP-1, pro-inflammatory molecules closely linked to matrix catabolism and pathogenesis of both disc degeneration and osteoarthritis, warranting investigations of this aspect of TonEBP function in skeletal cells. In summary, the TonEBP system, through its effects on extracellular matrix and osmoregulatory genes can be viewed primarily as a protective or homeostatic response to physiological loading.
    Matrix Biology 11/2014; · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intervertebral disc (IVD) is one of the largest avascular organs in vertebrates. The nucleus pulposus (NP), a highly hydrated and proteoglycan-enriched tissue, forms the inner portion of the IVD. The NP is surrounded by a multi-lamellar fibrocartilaginous structure, the annulus fibrosus (AF). This structure is covered superior and inferior side by cartilaginous endplates (CEP). The NP is a unique tissue within the IVD as it results from the differentiation of notochordal cells, whereas, AF and CEP derive from the sclerotome. The hypoxia inducible factor-1α (HIF-1α) is expressed in NP cells but its function in NP development and homeostasis is largely unknown. We thus conditionally deleted HIF-1α in notochordal cells and investigated how loss of this transcription factor impacts NP formation and homeostasis at E15.5, birth, 1 and 4 months of age, respectively. Histological analysis, cell lineage studies, and TUNEL assay were performed. Morphologic changes of the mutant NP cells were identified as early as E15.5, followed, postnatally, by the progressive disappearance and replacement of the NP with a novel tissue that resembles fibrocartilage. Notably, lineage studies and TUNEL assay unequivocally proved that NP cells did not transdifferentiate into chondrocyte-like cells but they rather underwent massive cell death, and were completely replaced by a cell population belonging to a lineage distinct from the notochordal one. Finally, to evaluate the functional consequences of HIF-1α deletion in the NP, biomechanical testing of mutant IVD was performed. Loss of the NP in mutant mice significantly reduced the IVD biomechanical properties by decreasing its ability to absorb mechanical stress. These findings are similar to the changes usually observed during human IVD degeneration. Our study thus demonstrates that HIF-1α is essential for NP development and homeostasis, and it raises the intriguing possibility that this transcription factor could be involved in IVD degeneration in humans.
    PLoS ONE 10/2014; 9(10):e110768. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of joint infections is not well understood. In particular, we do not know why these infections respond poorly to antibiotic treatment. Here we show that methicillin-resistant Staphylococcus aureus (MRSA), a major cause of joint infections, forms exceptionally strong biofilm-like aggregates in human synovial fluid, to an extent significantly exceeding biofilm formation observed in growth media or serum. Screening a transposon bank identified bacterial fibronectin- and fibrinogen-binding proteins as important for the formation of macroscopic clumps in synovial fluid, suggesting an important role of fibrin-containing clots in the formation of bacterial aggregates during joint infection. Pre-treatment of synovial fluid with plasmin led to a strongly reduced formation of aggregates and increased susceptibility to antibiotics. These results give important insight into the pathogenesis of staphylococcal joint infection and the mechanisms underlying resistance to treatment. Furthermore, they point toward a potential novel way for the therapy of joint infections.
    The Journal of Infectious Diseases 09/2014; · 5.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinase-3 (MMP-3) plays an important role in intervertebral disc degeneration, a ubiquitous condition closely linked to low back pain and disability. Elevated expression of syndecan 4, a cell surface heparan sulfate proteoglycan, actively controls disc matrix catabolism. However, the relationship between MMP-3 expression and syndecan 4 in the context of inflammatory disc disease has not been clearly defined. We investigated the mechanisms by which cytokines control MMP-3 expression in rat and human nucleus pulposus cells. Cytokine treatment increased MMP-3 expression and promoter activity. Stable silencing of syndecan 4 blocked cytokine-mediated MMP-3 expression; more important, syndecan 4 did not mediate its effects through NF-κB or mitogen-activated protein kinase (MAPK) pathways. However, treatment with MAPK and NF-κB inhibitors resulted in partial blocking of the inductive effect of cytokines on MMP-3 expression. Loss-of-function studies confirmed that NF-κB, p38α/β2/γ/δ, and extracellular signal-regulated kinase (ERK) 2, but not ERK1, contributed to cytokine-dependent induction of MMP3 promoter activity. Similarly, inhibitor treatments, lentiviral short hairpin-p65, and short hairpin-I κ B kinase β significantly decreased cytokine-dependent up-regulation in MMP-3 expression. Finally, we show that transforming growth factor-β can block the up-regulation of MMP-3 induced by tumor necrosis factor (TNF)-α by counteracting the NF-κB pathway and syndecan 4 expression. Taken together, our results suggest that cooperative signaling through syndecan 4 and the TNF receptor 1-MAPK-NF-κB axis is required for TNF-α-dependent expression of MMP-3 in nucleus pulposus cells. Controlling these pathways may slow the progression of intervertebral disc degeneration and matrix catabolism.
    American Journal Of Pathology 07/2014; · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to determine the role of FIH-1 in regulating HIF-1 activity in the nucleus pulposus (NP) cells, and the control of this regulation by binding and sequestration of FIH-1 by Mint3. FIH-1 and Mint3 were both expressed in the NP, and were shown to strongly co-localize within the cell nucleus. While both mRNA and protein expression of FIH-1 decreased in hypoxia, only Mint3 protein levels were hypoxia sensitive. Overexpression of FIH-1 was able to reduce HIF-1 function as seen by changes in activities of HRE-luciferase reporter and HIF-1α-CTAD and HIF-2α-TAD. Moreover, co-transfection of either full-length Mint3 or the N-terminus of Mint3 abrogated FIH-1-dependent reduction in HIF-1 activity under both normoxia and hypoxia. Nuclear levels of FIH-1 and Mint3 decreased in hypoxia, and use of specific nuclear import and export inhibitors clearly showed that cellular compartmentalization of overexpressed FIH-1 was critical for its regulation of HIF-1 activity in NP cells. Interestingly, microarray results after stable silencing of FIH-1 showed no significant changes in transcripts of classical HIF-1 target genes. However, expression of several other transcripts, including those of Notch pathway changed in FIH-1 silenced cells. Moreover, co-transfection of Notch-ICD could restore suppression of HIF1-TAD activity by exogenous FIH-1. Taken together, these results suggest that possibly due to low endogenous levels and/or preferential association with substrates such as Notch, FIH-1 activity does not represent a major mechanism by which NP cells control HIF-1-dependent transcription, a testament to their adaptation to a unique hypoxic niche.
    Journal of Biological Chemistry 05/2014; 289(30). · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intervertebral disc degeneration is the leading cause of chronic back pain. Recent studies show that raised level of SDC4, a cell-surface heparan sulfate (HS) proteoglycan, plays a role in pathogenesis of disc degeneration. However, in nucleus pulposus (NP) cells of the healthy intervertebral disc, the mechanisms that control expression of SDC4 and its physiological function are unknown. Hypoxia induced SDC4 mRNA and protein expression by ∼2.4- and 4.4-fold (P<0.05), respectively, in NP cells. While the activity of the SDC4 promoter containing hypoxia response element (HRE) was induced 2-fold (P<0.05), the HRE mutation decreased the activity by 40% in hypoxia. Transfections with plasmids coding prolyl-4-hydroxylase domain protein 2 (PHD2) and ShPHD2 show that hypoxic expression of SDC4 mRNA and protein is regulated by PHD2 through controlling hypoxia-inducible factor 1α (HIF-1α) levels. Although overexpression of HIF-1α significantly increased SDC4 protein levels, stable suppression of HIF-1α and HIF-1β decreased SDC4 expression by 50% in human NP cells. Finally, suppression of SDC4 expression, as well as HS function, resulted in an ∼2-fold increase in sex-determining region Y (SRY)-box 9 (Sox9) mRNA, and protein (P<0.05) and simultaneous increase in Sox9 transcriptional activity and target gene expression. Taken together, our findings suggest that in healthy discs, SDC4, through its HS side chains, contributes to maintenance of the hypoxic tissue niche by controlling baseline expression of Sox9.-Fujita, N., Hirose, Y., Tran, C. M., Chiba, K., Miyamoto, T., Toyama, Y., Shapiro, I. M., Risbud, M. V. HIF-1-PHD2 axis controls expression of syndecan 4 in nucleus pulposus cells.
    The FASEB Journal 02/2014; · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to examine the regulation of CCN2 by inflammatory cytokines, IL-1β and TNF-α and to determine if CCN2 modulates IL-1β-dependent catabolic gene expression in nucleus pulposus (NP) cells. IL-1β and TNF-α suppress CCN2 mRNA and protein expression in an NF-κB dependent but MAPK independent manner. The conserved κB sites located at -93/-86 and -546/-537 bp in the CCN2 promoter mediated this suppression. On the other hand, treatment of NP cells with IL-1β in combination with CCN2 suppressed the inductive effect of IL-1β on catabolic genes, including MMP-3, ADAMTS-5, syndecan 4 (SDC4) and prolyl hydroxylase 3 (PHD3). Likewise, silencing of CCN2 in human NP cells resulted in elevated basal expression of several catabolic genes and inflammatory cytokines like IL-6, IL-4 and IL-12 as measured by gene expression and cytokine protein array respectively. Interestingly, the suppressive effect of CCN2 on IL-1β was independent of modulation of NF-κB signaling. Using disintegrins, echistatin (ECH) and VLO4, peptide inhibitors to αvβ3 and α5β1 integrins, we showed that CCN2 binding to both integrins was required for the inhibition of IL-1β-induced catabolic gene expression. Noteworthy, analysis of human tissues showed a trend of altered expression of these integrins during degeneration. Taken together, these results suggest that CCN2 and inflammatory cytokines form a functional negative feedback loop in NP cells that may be important in the pathogenesis of disc disease.
    Journal of Biological Chemistry 01/2014; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  • Source
    The Journal of arthroplasty 12/2013; · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: From an evolutionary perspective, the major function of bone is to provide stable sites for muscle attachment and affording protection of vital organs, especially the heart and lungs (ribs) and spinal cord (vertebrae and intervertebral discs). However, bone has a considerable number of other functions: serving as a store for mineral ions, providing a site for blood cell synthesis and participating in a complex system-wide endocrine system. Not surprisingly, bone and cartilage cell homeostasis is tightly controlled, as is the maintenance of tissue structure and mass. While a great deal of new information is accruing concerning skeletal cell homeostasis, one relatively new observation is that the cells of bone (osteoclasts osteoblasts and osteocytes) and cartilage (chondrocytes) exhibit autophagy. The focus of this review is to examine the significance of this process in terms of the functional demands of the skeleton in health and during growth and to provide evidence that dysregulation of the autophagic response is involved in the pathogenesis of diseases of bone (Paget disease of bone) and cartilage (osteoarthritis and the mucopolysaccharidoses). Delineation of molecular changes in the autophagic process is uncovering new approaches for the treatment of diseases that affect the axial and appendicular skeleton.
    Autophagy 11/2013; 10(1). · 11.42 Impact Factor
  • Makarand V Risbud, Irving M Shapiro
    [Show abstract] [Hide abstract]
    ABSTRACT: Degeneration of the intervertebral discs (IVDs) is a major contributor to back, neck and radicular pain. IVD degeneration is characterized by increases in levels of the proinflammatory cytokines TNF, IL-1α, IL-1β, IL-6 and IL-17 secreted by the IVD cells; these cytokines promote extracellular matrix degradation, chemokine production and changes in IVD cell phenotype. The resulting imbalance in catabolic and anabolic responses leads to the degeneration of IVD tissues, as well as disc herniation and radicular pain. The release of chemokines from degenerating discs promotes the infiltration and activation of immune cells, further amplifying the inflammatory cascade. Leukocyte migration into the IVD is accompanied by the appearance of microvasculature tissue and nerve fibres. Furthermore, neurogenic factors, generated by both disc and immune cells, induce expression of pain-associated cation channels in the dorsal root ganglion. Depolarization of these ion channels is likely to promote discogenic and radicular pain, and reinforce the cytokine-mediated degenerative cascade. Taken together, an enhanced understanding of the contribution of cytokines and immune cells to these catabolic, angiogenic and nociceptive processes could provide new targets for the treatment of symptomatic disc disease. In this Review, the role of key inflammatory cytokines during each of the individual phases of degenerative disc disease, as well as the outcomes of major clinical studies aimed at blocking cytokine function, are discussed.
    Nature Reviews Rheumatology 10/2013; · 9.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite many advances in our understanding of the molecular basis of disc degeneration, there remains a paucity of preclinical models which can be used to study the biochemical and molecular events that drive disc degeneration, and the effects of potential therapeutic interventions. The goal of this study is to characterize global gene expression changes in a disc organ culture system that mimics early nontraumatic disc degeneration. To mimic a degenerative insult, rat intervertebral discs were cultured in the presence of TNF-a, IL-1ß and serum-limiting conditions. Gene expression analysis was performed using a microarray to identify differential gene expression between experimental and control groups. Differential pattern of gene expression was confirmed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or Western blot. Treatment resulted in significant changes in expression of more than 1,000 genes affecting many aspects of cell function including cellular movement, the cell cycle, cellular development, and cell death and proliferation. Many of the most highly upregulated and downregulated genes have known functions in disc degeneration and extracellular matrix hemostasis. Construction of gene networks based on known cellular pathways and expression data from our analysis demonstrated that the network associated with cell death, cell cycle regulation and DNA replication and repair was most heavily affected in this model of disc degeneration. This rat organ culture model uses cytokine exposure to induce wide gene expression changes with the most affected genes having known reported functions in disc degeneration. We propose that this model is a valuable tool to study the etiology of disc degeneration and evaluate potential therapeutic treatments.
    Arthritis research & therapy 09/2013; 15(5):R121. · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated TNF-α and IL-1β regulation of ADAMTS-4 expression in nucleus pulposus (NP) cells and its role in aggrecan degradation. Real-time quantitative RT-PCR, Western blotting, and transient transfections with rat NP cells and lentiviral silencing with human NP cells were performed to determine the roles of MAPK and NF-κB in cytokine-mediated ADAMTS-4 expression and function. ADAMTS4 expression and promoter activity increased in NP cells after TNF-α and IL-1β treatment. Treatment of cells with MAPK and NF-κB inhibitors abolished the inductive effect of the cytokines on ADAMTS4 mRNA and protein expression. Although ERK1, p38α, p38β2, and p38γ were involved in induction, ERK2 and p38δ played no role in TNF-α-dependent promoter activity. The inductive effect of p65 on ADAMTS4 promoter was confirmed through gain and loss-of-function studies. Cotransfection of p50 completely blocked p65-mediated induction. Lentiviral transduction with shRNA plasmids shp65, shp52, shIKK-α, and shIKK-β significantly decreased TNF-α-dependent increase in ADAMTS-4 and -5 levels and aggrecan degradation. Silencing of either ADAMTS-4 or -5 resulted in reduction in TNF-α-dependent aggrecan degradation in NP cells. By controlling activation of MAPK and NF-κB signaling, TNF-α and IL-1β modulate expression of ADAMTS-4 in NP cells. To our knowledge, this is the first study to show nonredundant contribution of both ADAMTS-4 and ADAMTS-5 to aggrecan degradation in human NP cells in vitro.
    American Journal Of Pathology 04/2013; · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to investigate how inflammatory cytokines, IL-1β and TNF-α control Notch signaling activity in nucleus pulposus (NP) cells. An increase in expression of selective Notch receptors (Notch1, 2), ligand (Jagged 2) and target genes (Hes1, Hey1 and Hey2) was observed in NP cells following cytokine treatment. A concomitant increase in Notch signaling as evidenced by induction in activity of target gene Hes1 and Hey1 promoters and reporter 12xCSL was seen. Moreover, treatment increased activity of a 2 kb Notch2 promoter. Treatment of cells with NF-κB and MAPK inhibitors abolished the inductive effect of cytokines on Notch2 promoter and its expression. Gain and loss-of-function studies confirmed the inductive effect of p65 on Notch2 promoter activity. In contrast, p50 blocked the cytokine induction of promoter activity. Supporting the promoter studies, lentiviral delivery of sh-p65, and sh-IKKβ significantly decreased cytokine dependent change in Notch2 expression. Interestingly, MAPK signaling showed an isoform specific control of Notch2 promoter, p38α/β2/δ, ERK1 and ERK2 contributed to cytokine dependent induction while p38γ played no role. Analysis of human NP tissues showed that Notch 1, 2 and Hey2 expression correlated with each other. Moreover, expression of Notch2 and IL-1β as well as the number of cells immunopositive for Notch2 significantly increased in histologically degenerate discs compared to non-degenerate discs. Taken together these results explain the observed dysregulated expression of Notch genes in degenerative disc disease. Thus controlling IL-1β and TNF-αactivities during disc disease may restore Notch signaling and nucleus pulposus cell function.
    Journal of Biological Chemistry 04/2013; · 4.60 Impact Factor
  • Source
    Cassie M Tran, Irving M Shapiro, Makarand V Risbud
    [Show abstract] [Hide abstract]
    ABSTRACT: Connective tissue growth factor (CCN2/CTGF) plays an important role in extracellular matrix synthesis, especially in skeletal tissues such as cartilage, bone, and the intervertebral disc. As a result there is a growing interest in examining the function and regulation of this important molecule in the disc. This review discusses the regulation of CCN2 by TGF-β and hypoxia, two critical determinants that characterize the disc microenvironment, and discusses known functions of CCN2 in the disc. The almost ubiquitous regulation of CCN2 by TGF-β, including that seen in the disc, emphasizes the importance of the TGF-β-CCN2 relationship, especially in terms of extracellular matrix synthesis. Likewise, the unique cross-talk between CCN2 and HIF-1 in the disc highlights the tissue and niche specific mode of regulation. Taken together the current literature supports an anabolic role for CCN2 in the disc and its involvement in the maintenance of tissue homeostasis during both health and disease. Further studies of CCN2 in this tissue may reveal valuable targets for the biological therapy of disc degeneration.
    Matrix biology: journal of the International Society for Matrix Biology 04/2013; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study was to investigate if HIF-1α and CCN2 form a regulatory network in hypoxic nucleus pulposus (NP) cells. A decrease in CCN2 expression and proximal promoter activity was observed in NP cells after hypoxic culture. Analysis of both human and mouse CCN2 promoters using the JASPAR core database revealed the presence of putative hypoxia response elements (HREs). Transfection experiments showed that both promoter activities and CCN2 expression decreases in hypoxia in a HIF-1α-dependent fashion. Interestingly, deletion analysis and mutation of the HREs individually or in combination resulted in no change in promoter activity in response to hypoxia or in response to HIF-1α, suggesting an indirect mode of regulation. Notably, silencing of endogenous CCN2 increased HIF-1α levels and its target gene expression, suggesting a role for CCN2 in controlling basal HIF-1α levels. On the other hand, treatment of cells with rCCN2 resulted in a decrease in the ability of HIF-1α transactivating domain to recruit co-activators and diminished target gene expression. Lastly, knockdown of CCN2 in NP cells results in a significant decrease in GAG synthesis and expression of aggrecan and collagen II. Immunohistochemical staining of intervertebral discs of CCN2 null embryos shows a decrease in aggrecan. These findings reveal a negative feedback loop between CCN2 and HIF-1α in NP cells and demonstrate a role for CCN2 in maintaining matrix homeostasis in this tissue.
    Journal of Biological Chemistry 03/2013; · 4.60 Impact Factor

Publication Stats

9k Citations
1,157.91 Total Impact Points

Institutions

  • 2002–2015
    • Thomas Jefferson University
      • • Department of Orthopaedic Surgery
      • • Department of Surgery
      Filadelfia, Pennsylvania, United States
  • 2012
    • University of Michigan
      • Life Sciences Institute
      Ann Arbor, MI, United States
  • 2003–2012
    • Thomas Jefferson University Hospitals
      Philadelphia, Pennsylvania, United States
  • 2011
    • Philadelphia College of Osteopathic Medicine
      Philadelphia, Pennsylvania, United States
  • 2009
    • Thomas Jefferson School of Law
      Filadelfia, Pennsylvania, United States
  • 1973–2008
    • University of Pennsylvania
      • • Department of Bioengineering
      • • Department of Medicine
      • • Department of Pathology
      • • Department of Biochemistry
      • • Department of Radiation Oncology
      • • School of Dental Medicine
      • • Department of Orthodontics
      Philadelphia, Pennsylvania, United States
    • Harvard Medical School
      • Department of Psychiatry
      Boston, Massachusetts, United States
  • 2007
    • Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana
      Roma, Latium, Italy
  • 2003–2005
    • CUNY Graduate Center
      New York City, New York, United States
  • 1999
    • Southern Illinois University School of Medicine
      Springfield, Illinois, United States
  • 1992–1999
    • Hospital of the University of Pennsylvania
      • Department of Biochemistry and Biophysics
      Philadelphia, Pennsylvania, United States
  • 1994
    • Philadelphia University
      Filadelfia, Pennsylvania, United States
  • 1989–1991
    • Showa University
      • Division of General Medicine
      Shinagawa, Tōkyō, Japan
  • 1988
    • Tokyo Medical and Dental University
      • Department of Oral Surgery
      Edo, Tōkyō, Japan