C R Mendelson

University of Texas Southwestern Medical Center, Dallas, Texas, United States

Are you C R Mendelson?

Claim your profile

Publications (167)764.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Persistent hypoxia caused by shallow invasion and poor placental perfusion may underlie the pathophysiology of preeclampsia, a leading cause of maternal and neonatal morbidity and mortality. Previously, we found that estrogen-related receptor γ (ERRγ) serves a critical and O2-dependent role in differentiation of human trophoblasts in culture and expression of tissue kallikrein and voltage-gated K(+) channels. In this study, we surprisingly observed that ERRγ expression was significantly increased in placentas from preeclamptic, compared to gestation-matched normotensive women. To further investigate a functional role for ERRγ during pregnancy, we analyzed ERRγ-deficient mice. Maternal systolic blood pressure was significantly reduced in pregnant ERRγ(+/-) females bred to ERRγ(+/-) males, compared to wild-type (WT), and was markedly upregulated by treatment of WT pregnant mice with the ERRγ agonist DY131. Placentas of ERRγ(+/-) mice manifested increased vascular endothelial growth factor A (VEGFA) expression, compared to WT. Notably, circulating levels of the anti-angiogenic factor, soluble fms-like tyrosine kinase-1 (sFlt-1), were significantly reduced in ERRγ(+/-) pregnant mice, as was serum aldosterone. This was associated with a decrease in maternal adrenal Cyp11b1 (steroid 11β-hydroxylase) and Cyp11b2 (aldosterone synthase) expression. By contrast, adrenal Cyp11b1 and Cyp11b2 mRNA was increased in pregnant WT mice treated with DY131. Moreover, chromatin immunoprecipitation and luciferase reporter assays identified Cyp11b2 as a transcriptional target of ERRγ. Collectively, these findings reveal a potential role of ERRγ in maternal blood pressure homeostasis during pregnancy and suggest that aberrant ERRγ expression may contribute to pathogenesis of preeclampsia.
    Molecular Endocrinology 04/2014; · 4.75 Impact Factor
  • Carole R Mendelson
    Endocrinology 06/2013; 154(6):1967-1969. · 4.72 Impact Factor
  • Nora E Renthal, Koriand'r C Williams, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: The maintenance of myometrial quiescence and initiation of contractility, which lead to parturition at term and preterm, involve a shifting equilibrium between anti-inflammatory and proinflammatory signalling pathways. Progesterone (P4), acting through the progesterone receptor (PR), has an essential and multifaceted role in the maintenance of myometrial quiescence. This effect of P4-PR signalling is mediated, in part, by its anti-inflammatory actions and capacity to repress the expression of genes that encode proinflammatory cytokines, such as IL-1 and IL-6, and contraction-associated proteins, such as OXTR, GJA1 and PTGS2. By contrast, increased expression of genes that ultimately lead to parturition is mediated by enhanced inflammatory and estradiol-17β (E2) and estrogen receptor α signalling, which reduce PR function, thus further intensifying the inflammatory response. To obtain a more complete understanding of the molecular events that underlie the transition of the pregnant myometrium from a refractory to a contractile state, the roles of microRNAs, their targets, and their transcriptional and hormonal regulation have been investigated. This article reviews the actions of the miR-200 family and their P4-regulated targets-the transcription factors ZEB1, ZEB2 and STAT5B-in the pregnant myometrium, as well as the role of miR-199a-3p and miR-214 and their mutual target PTGS2. The central role of ZEB1 as the mediator of the opposing actions of P4 and E2 on myometrial contractility will be highlighted.
    Nature Reviews Endocrinology 05/2013; · 11.03 Impact Factor
  • Yanmin Luo, Premlata Kumar, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen-related receptor γ (ERRγ), serves a critical O2-dependent regulatory role in differentiation of human cytotrophoblasts to syncytiotrophoblast. In this study, we investigated expression of genes encoding tissue kallikreins (KLK1) and voltage-gated K(+) channels (KV7) during differentiation of human trophoblasts in culture and the roles of ERRγ and O2 tension in their regulation. Expression of KLK1 and the KV7 channel subunits, KCNQ1, KCNE1, KCNE3, KCNE5, increased during differentiation of cultured human trophoblast cells in a 20% O2 environment. Notably, together with ERRγ, expression of KLK1, KCNQ1, KCNE1, KCNE3 and KCNE5 was markedly reduced when cells were cultured in a hypoxic environment (2% O2). Moreover, upon transduction of trophoblast cells with shRNAs for endogenous ERRγ, KLK1, KCNQ1, KCNE1 and KCNE3 expression was significantly decreased. Promoter and site-directed mutagenesis studies in transfected cells identified putative ERRγ response elements (ERREs) within the KLK1 and KCNE1 5'-flanking regions required for ERRγ-stimulated transcriptional activity. Binding of endogenous ERRγ to these ERREs increased during trophoblast differentiation in culture and was inhibited by hypoxia. The KV7 blocker linopirdine reduced hCG secretion and aggregation of cultured human trophoblasts, suggesting a possible role of KV7 channels in cell fusion and differentiation. Illumina gene expression arrays of cultured human trophoblast cells revealed several genes upregulated during syncytiotrophoblast differentiation and downregulated upon ERRγ knockdown involved in cell differentiation, adhesion, and synthesis of steroid and peptide hormones required for placental development and function. Collectively, these findings suggest that ERRγ mediates O2-dependent expression of genes involved in human trophoblast differentiation, function and vascular homeostasis.
    Molecular Endocrinology 04/2013; · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mononuclear cytotrophoblasts of the human placenta proliferate rapidly, subsequently fuse and differentiate to form multinucleated syncytiotrophoblast with induction in aromatase/hCYP19A1 and chorionic gonadotropin (hCGβ) expression. Using microarray analysis, we identified members of the miR-17∼92 cluster and its paralogs, miR-106a∼363 and miR-106b∼25, that are significantly downregulated upon syncytiotrophoblast differentiation. Interestingly, miR-19b and miR-106a directly targeted hCYP19A1 expression, while miR-19b also targeted hGCM1, a transcription factor critical for mouse labyrinthine trophoblast development. Overexpression of these miRNAs impaired syncytiotrophoblast differentiation. hGCM1 knockdown decreased hCYP19A1 and hCGβ expression, substantiating its important role in human trophoblast differentiation. Expression of the protooncogene, c-Myc, was increased in proliferating cytotrophoblasts, compared to differentiated syncytiotrophoblast. Moreover, c-Myc overexpression upregulated miR-17∼92 and inhibited hCYP19A1 and hCGβ expression. Binding of endogenous c-Myc to genomic regions upstream of the miR-17∼92 and miR-106a∼363 clusters in cytotrophoblasts dramatically decreased upon syncytiotrophoblast differentiation. Intriguingly, we observed higher levels of miR-106a and -19b and lower aromatase and hGCM1 expression in placentas from preeclamptic women, as compared to placentas from gestation-matched normotensive women. Our findings reveal that c-Myc-regulated members of miR-17∼92 and miR-106a∼363 clusters inhibit trophoblast differentiation by repressing hGCM1 and hCYP19A1 and suggest that aberrant regulation of these miRNAs may contribute to the pathogenesis of preeclampsia.
    Molecular and Cellular Biology 02/2013; · 5.04 Impact Factor
  • Alina P Montalbano, Samuel Hawgood, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously we obtained compelling evidence that the fetus provides a critical signal for the initiation of term labor through developmental induction of surfactant protein (SP)-A expression by the fetal lung and secretion into amniotic fluid (AF). We proposed that interactions of AF macrophage (Mϕ) Toll-like receptors (TLRs) with SP-A, at term, or bacterial components, at preterm, result in their activation and migration to the pregnant uterus. Herein the timing of labor in wild-type (WT) C57BL/6 mice was compared with mice homozygous null for TLR2, SP-A, SP-D, or doubly deficient in SP-A and SP-D. Interestingly, TLR2(-/-) females manifested a significant (P < 0.001) delay in timing of labor compared with WT as well as reduced expression of the myometrial contraction-associated protein (CAP) gene, connexin-43, and Mϕ marker, F4/80, at 18.5 d postcoitum (dpc). Whereas in first pregnancies, SP-A(-/-), SP-D(-/-), and SP-A/D(-/-) females delivered at term (∼19.5 dpc), in second pregnancies, parturition was delayed by approximately 12 h in SP-A(-/-) (P = 0.07) and in SP-A/D(-/-) (P <0.001) females. Myometrium of SP-A/D(-/-) females expressed significantly lower levels of IL-1β, IL-6, and CAP genes, connexin-43, and oxytocin receptor at 18.5 dpc compared with WT. F4/80(+) AF Mϕs from TLR2(-/-) and SP-A/D(-/-) mice expressed significantly lower levels of both proinflammatory and antiinflammatory activation markers (e.g. IL-1β, IL-6, ARG1, YM1) compared with gestation-matched WT AF Mϕs. These novel findings suggest that the pulmonary collectins acting via TLR2 serve a modulatory role in the timing of labor; their relative impact may be dependent on parity.
    Endocrinology 11/2012; · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Progesterone (P(4)) and estradiol-17β (E(2)) play critical and opposing roles in regulating myometrial quiescence and contractility during pregnancy and labor. Although these contrasting hormonal effects are likely mediated via differential regulation of inflammatory and contractile genes, the underlying mechanisms remain incompletely understood. Recently we discovered that targets of the microRNA (miR)-200 family, transcription factors zinc finger E-box binding homeobox (ZEB)-1 and ZEB2, serve as P(4)/progesterone receptor-mediated regulators of uterine quiescence during pregnancy. In the present study, we found that levels of the clustered miRNAs, miR-199a-3p and miR-214, were significantly decreased in laboring myometrium of pregnant mice and humans and in an inflammatory mouse model of preterm labor, whereas the miR-199a-3p/miR-214 target, cyclooxygenase-2, a critical enzyme in synthesis of proinflammatory prostaglandins, was coordinately increased. Overexpression of miR-199a-3p and miR-214 in cultured human myometrial cells inhibited cyclooxygenase-2 protein and blocked TNF-α-induced myometrial cell contractility, suggesting their physiological relevance. Notably, E(2) treatment of ovariectomized mice suppressed, whereas P(4) enhanced uterine miR-199a-3p/214 expression. Intriguingly, these opposing hormonal effects were mediated by ZEB1, which is induced by P(4), inhibited by E(2) and activates miR199a/214 transcription. Together, these findings identify miR-199a-3p/miR-214 as important regulators of myometrial contractility and provide new insight into strategies to prevent preterm birth.
    Molecular Endocrinology 09/2012; · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During pregnancy, uterine quiescence is maintained by increased progesterone receptor (PR) activity, but labor is facilitated by a series of events that impair PR function. Previously, we discovered that miR-200 family members serve as progesterone (P(4))-modulated activators of contraction-associated genes in the pregnant uterus. In this study, we identified a unique role for miR-200a to enhance the local metabolism of P(4) in myometrium and, thus, decrease PR function during the progression toward labor. miR-200a exerts this action by direct repression of STAT5b, a transcriptional repressor of the P(4)-metabolizing enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD). We observed that miR-200a expression increased and STAT5b expression coordinately decreased in myometrium of mice as they progressed to labor and in laboring myometrium from pregnant women. These changes were associated with a dramatic increase in expression and activity of 20α-HSD in laboring myometrium from mouse and human. Notably, overexpression of miR-200a in cultured human myometrial cells (hTERT-HM) suppressed STAT5b and increased 20α-HSD mRNA levels. In uterine tissues of ovariectomized mice injected with P(4), miR-200 expression was significantly decreased, STAT5b expression was up-regulated, and 20α-HSD mRNA was decreased, but in 15 d postcoitum pregnant mice injected with the PR antagonist RU486, preterm labor was associated with increased miR-200a, decreased STAT5b, and enhanced 20α-HSD expression. Taken together, these findings implicate miR-200a as an important regulator of increased local P(4) metabolism in the pregnant uterus near term and provide insight into the importance of miR-200s in the decline in PR function leading to labor.
    Proceedings of the National Academy of Sciences 04/2012; 109(19):7529-34. · 9.81 Impact Factor
  • Chien-Cheng Chen, Daniel B Hardy, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: The roles of progesterone (P(4)) and of progesterone receptor (PR) in development and pathogenesis of breast cancer remain unclear. In this study, we observed that treatment of T47D breast cancer cells with progestin antagonized effects of fetal bovine serum (FBS) to stimulate cell proliferation, whereas siRNA-mediated knockdown of endogenous PR abrogated progestin-mediated anti-proliferative effects. To begin to define mechanisms for the anti-proliferative action of P(4)/PR, we considered the role of MAPK phosphatase 1 (MKP-1/DUSP1), which catalyzes dephosphorylation and inactivation of MAPKs. Progestin treatment of T47D cells rapidly induced MKP-1 expression in a PR-dependent manner. Importantly, P(4) induction of MKP-1 was associated with reduced levels of phosphorylated ERK1/2, whereas siRNA knockdown of MKP-1 blocked progestin-mediated ERK1/2 dephosphorylation and repression of FBS-induced cell proliferation. The importance of PR in MKP-1 expression was supported by findings that MKP-1 and PR mRNA levels were significantly correlated in 30 human breast cancer cell lines. By contrast, no correlation was observed with the glucocorticoid receptor, a known regulator of MKP-1 in other cell types. ChIP and luciferase reporter assay findings suggest that PR acts in a ligand-dependent manner through binding to two progesterone response elements downstream of the MKP-1 transcription start site to up-regulate MKP-1 promoter activity. PR also interacts with two Sp1 sites just downstream of the transcription start site to increase MKP-1 expression. Collectively, these findings suggest that MKP-1 is a critical mediator of anti-proliferative and anti-inflammatory actions of PR in the breast.
    Journal of Biological Chemistry 12/2011; 286(50):43091-102. · 4.65 Impact Factor
  • Premlata Kumar, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiation of human cytotrophoblasts to syncytiotrophoblast and the associated induction of aromatase/hCYP19 gene expression are dependent upon a critical O(2) tension; however, the underlying molecular mechanisms remain undefined. In this study, we provide compelling evidence that expression of the orphan nuclear receptor, estrogen-related receptor γ (ERRγ), is also O(2) dependent, induced during human syncytiotrophoblast differentiation, and plays an obligatory role in the induction of placenta-specific hCYP19I.1 gene expression. Treatment with the selective ERRγ agonist, DY131, or overexpression of ERRγ, stimulated hCYP19 expression in syncytiotrophoblast. Overexpression of ERRγ prevented effects of hypoxia to repress hCYP19 gene expression in cultured trophoblasts. Conversely, small interfering RNA-mediated knockdown of endogenous ERRγ in primary trophoblasts markedly inhibited hCYP19 expression. Promoter and site-directed mutagenesis studies in transfected placental cells identified a nuclear receptor element within placenta-specific hCYP19 promoter I.1 required for ERRγ-stimulated activity. Recruitment of endogenous ERRγ to the nuclear receptor element region in hCYP19 promoter during trophoblast differentiation, assessed by chromatin immunoprecipitation, was prevented by hypoxia. Deferoxamine-induced hypoxia-inducible factor-1α (HIF-1α) levels decreased ERRγ expression, whereas knockdown of endogenous HIF-1α prevented ERRγ suppression by hypoxia. Chromatin immunoprecipitation analysis of trophoblasts cultured in hypoxia revealed recruitment of HIF-1α to one of two putative hypoxia response elements in the ERRγ promoter, providing in vivo evidence of a direct HIF-1α involvement in ERRγ expression. Collectively, these novel findings identify ERRγ as an O(2)-dependent transcription factor and HIF-1α target gene that serves a critical role in the induction of hCYP19 expression during human trophoblast differentiation.
    Molecular Endocrinology 07/2011; 25(9):1513-26. · 4.75 Impact Factor
  • Source
    Houda Benlhabib, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: SP-A gene expression is developmentally regulated in fetal lung. Cyclic AMP (cAMP) induction of SP-A expression in human fetal lung type II cells is O(2) dependent and is mediated by increased binding of TTF-1/Nkx2.1 and NF-κB to a critical response element (TBE). This is associated with increased acetylation and decreased methylation of H3K9 at the TBE. Using chromatin immunoprecipitation analysis of fetal lung between 15.5 and 19.0 days of gestation, we observed that the developmental induction of SP-A was associated with increased recruitment of TTF-1, NF-κB, PCAF, and CBP, as well as enhanced acetylation and decreased methylation of histone H3K9 at the TBE. Importantly, expression and TBE binding of the H3K9 methyltransferases, Suv39h1 and Suv39h2, was inversely correlated with the developmental upregulation of SP-A. In human fetal lung epithelial cells, Suv39H1 and Suv39H2 mRNA levels declined with cAMP induction of SP-A. Moreover, hypoxia, which inhibits cAMP stimulation of SP-A, markedly increased Suv39h1 and Suv39h2 binding to the TBE. Finally, short hairpin RNA knockdown of Suv39H1 or Suv39H2 in fetal lung epithelial cells repressed H3K9 methylation and greatly enhanced SP-A expression. Collectively, our findings suggest that Suv39H1 and Suv39H2 are key hypoxia-induced methyltransferases; their decline in fetal lung during late gestation is critical for epigenetic changes resulting in the developmental induction of SP-A.
    Molecular and Cellular Biology 03/2011; 31(10):1949-58. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Throughout most of pregnancy, uterine quiescence is maintained by increased progesterone receptor (PR) transcriptional activity, whereas spontaneous labor is initiated/facilitated by a concerted series of biochemical events that activate inflammatory pathways and have a negative impact on PR function. In this study, we uncovered a previously undescribed regulatory pathway whereby micro-RNAs (miRNAs) serve as hormonally modulated and conserved mediators of contraction-associated genes in the pregnant uterus in the mouse and human. Using miRNA and gene expression microarray analyses of uterine tissues, we identified a conserved family of miRNAs, the miR-200 family, that is highly induced at term in both mice and humans as well as two coordinately down-regulated targets, zinc finger E-box binding homeobox proteins ZEB1 and ZEB2, which act as transcriptional repressors. We also observed up-regulation of the miR-200 family and down-regulation of ZEB1 and ZEB2 in two different mouse models of preterm labor. We further demonstrated that ZEB1 is directly up-regulated by the action of progesterone (P(4))/PR at the ZEB1 promoter. Excitingly, we observed that ZEB1 and ZEB2 inhibit expression of the contraction-associated genes, oxytocin receptor and connexin-43, and block oxytocin-induced contractility in human myometrial cells. Together, these findings implicate the miR-200 family and their targets, ZEB1 and ZEB2, as unique P(4)/PR-mediated regulators of uterine quiescence and contractility during pregnancy and labor and shed light on the molecular mechanisms involved in preterm birth.
    Proceedings of the National Academy of Sciences 11/2010; 107(48):20828-33. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rare heterozygous mutations in the gene encoding surfactant protein A2 (SP-A2, SFTPA2) are associated with adult-onset pulmonary fibrosis and adenocarcinoma of the lung. We have previously shown that two recombinant SP-A2 mutant proteins (G231V and F198S) remain within the endoplasmic reticulum (ER) of A549 cells and are not secreted into the culture medium. The pathogenic mechanism of the mutant proteins is unknown. Here we analyze all common and rare variants of the surfactant protein A2, SP-A2, in both A549 cells and in primary type II alveolar epithelial cells. We show that, in contrast with all other SP-A2 variants, the mutant proteins are not secreted into the medium with wild-type SP-A isoforms, form fewer intracellular dimer and trimer oligomers, are partially insoluble in 0.5% Nonidet P-40 lysates of transfected A549 cells, and demonstrate greater protein instability in chymotrypsin proteolytic digestions. Both the G231V and F198S mutant SP-A2 proteins are destroyed via the ER-association degradation pathway. Expression of the mutant proteins increases the transcription of a BiP-reporter construct, expression of BiP protein, and production of an ER stress-induced XBP-1 spliced product. Human bronchoalveolar wash samples from individuals who are heterozygous for the G231V mutation have similar levels of total SP-A as normal family members, which suggests that the mechanism of disease does not involve an overt lack of secreted SP-A but instead involves an increase in ER stress of resident type II alveolar epithelial cells.
    Journal of Biological Chemistry 05/2010; 285(29):22103-13. · 4.65 Impact Factor
  • Premlata Kumar, Amrita Kamat, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: A 246-bp region upstream of placenta-specific exon I.1 of the human aromatase (hCYP19) gene mediates placenta-specific, developmental, and O(2) regulation of expression. In this study, trophoblast differentiation and associated induction of CYP19 expression were prevented when cytotrophoblasts were cultured in phenol red-free medium containing charcoal-stripped serum or with the estrogen receptor (ER) antagonist, ICI 182,780, suggesting a stimulatory role of estrogen/ER. ERalpha protein was expressed in human trophoblasts and increased during syncytiotrophoblast differentiation, whereas ERbeta was undetectable. Mutational analysis revealed that an estrogen response element-like sequence (ERE-LS) at -208 bp is required for inductive effects of estradiol/ERalpha on hCYP19I.1 promoter activity in transfected COS-7 cells. Increased binding of syncytiotrophoblast compared with cytotrophoblast nuclear proteins to the ERE-LS was observed in vitro; however, ERalpha antibodies failed to supershift the complex and in vitro-transcribed/translated ERalpha did not bind. Nonetheless, chromatin immunoprecipitation assays in cultured trophoblasts revealed recruitment of endogenous ERalpha to the -255- to -155-bp region containing the ERE-LS before induction of hCYP19 expression; this was inhibited by ICI 182,780. Chromatin immunoprecipitation also revealed increased acetylated histone H3(K9/14) and decreased methylated histone H3(K9) associated with this region during trophoblast differentiation. These modifications were prevented when trophoblasts were incubated with ICI 182,780, suggesting that ERalpha recruitment to the -255- to -155-bp region promotes histone modifications leading to increased hCYP19 transcription. Thus, during trophoblast differentiation, estrogen/ERalpha exerts a positive feedback role, which promotes permissive histone modifications that are associated with induction of hCYP19 gene transcription.
    Molecular Endocrinology 04/2009; 23(6):784-93. · 4.75 Impact Factor
  • Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms underlying the initiation of parturition remain unclear. Throughout most of pregnancy, uterine quiescence is maintained by elevated progesterone acting through progesterone receptor (PR). Although in most mammals, parturition is associated with a marked decline in maternal progesterone, in humans, circulating progesterone and uterine PR remain elevated throughout pregnancy, suggesting a critical role for functional PR inactivation in the initiation of labor. Both term and preterm labor in humans and rodents are associated with an inflammatory response. In preterm labor, intraamniotic infection likely provides the stimulus for increased amniotic fluid interleukins and migration of inflammatory cells into the uterus and cervix. However, at term, the stimulus for this inflammatory response is unknown. Increasing evidence suggests that the developing fetus may produce physical and hormonal signals that stimulate macrophage migration to the uterus, with release of cytokines and activation of inflammatory transcription factors, such as nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1), which also is activated by myometrial stretch. We postulate that the increased inflammatory response and NF-kappaB activation promote uterine contractility via 1) direct activation of contractile genes (e.g. COX-2, oxytocin receptor, and connexin 43) and 2) impairment of the capacity of PR to mediate uterine quiescence. PR function near term may be compromised by direct interaction with NF-kappaB, altered expression of PR coregulators, increased metabolism of progesterone within the cervix and myometrium, and increased expression of inhibitory PR isoforms. Alternatively, we propose that uterine quiescence during pregnancy is regulated, in part, by PR antagonism of the inflammatory response.
    Molecular Endocrinology 04/2009; 23(7):947-54. · 4.75 Impact Factor
  • Dongyuan Liu, Houda Benlhabib, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen-related receptor (ERRalpha) plays a critical role in basal and cAMP-induced expression of the human surfactant protein-A (SP-A) gene in lung type II cells through direct binding to an ERR response element (ERRE, 5'-TGACCTTA-3') within its 5'-flanking region. Furthermore, protein kinase A (PKA) up-regulates ERRalpha activation of the hSP-A promoter. In the present study, using cultured human fetal lung type II cells, we observed that cAMP enhanced ERRalpha phosphorylation and nuclear expression levels. cAMP/PKA stimulation of ERRalpha activation of the SP-A promoter was blocked by the PKA inhibitor, H89, whereas the MAPK P38 inhibitor, SB203580, and the MAPK kinase inhibitor, PD98059, had negligible to modest effects. This suggests that cAMP acts selectively through PKA to increase ERRalpha transcriptional activity. Of several coactivators tested, steroid receptor coactivator 2 (SRC-2) had the most pronounced effect to increase ERRalpha transcriptional activity at the SP-A promoter; this was enhanced by cotransfection with PKA catalytic subunit (PKAcat). Interestingly, SRC-2, ERRalpha, and PKAcat in type II cell nuclear extracts interacted at the ERRE; this was enhanced by cAMP and inhibited by H89. cAMP increased in vivo binding of PKAcat and SRC-2 to the ERRE genomic region in lung type II cells. In mutagenesis studies, three serines (S87, S114, and S277) were found to be critical for PKA and SRC-2 induction of ERRalpha transcriptional activity. Collectively, these findings indicate that cAMP/PKA signaling enhances ERRalpha phosphorylation and nuclear localization, recruitment to the SP-A promoter, and interaction with PKAcat and SRC-2, resulting in the up-regulation of SP-A gene transcription.
    Molecular Endocrinology 04/2009; 23(6):772-83. · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Up-regulation of aromatase expression in endometrial cells disseminated into the peritoneal cavity may enhance their survival via local estrogen synthesis, which may lead to endometriosis. The factors that mediate induction of aromatase in the endometrium are not well defined, but increased expression of steroidogenic factor (SF)-1 may play a role. The objective of the study was to determine whether androstenedione (A4), the predominant sex steroid in peritoneal fluid, regulates endometrial aromatase expression. This was a cell/tissue culture study. The study was conducted at an academic center. Quantitative real-time PCR, HPLC, and chromatin immunoprecipitation were used in this study. Treatment of cultured human endometrial explants and stromal cells with A4 (10 nm) significantly up-regulated expression of aromatase mRNA transcripts containing exon IIa at their 5'-ends. In endometrial stromal cells and the human endometrial surface epithelial (HES) cell line, induction of aromatase mRNA by A4 was associated with increased expression of SF-1. In HES cells, tritiated A4 was metabolized to estradiol, testosterone (T), dihydrotestosterone, and androstanediol. Both estradiol and T, but not nonaromatizable androgens, up-regulated aromatase and SF-1 mRNA in HES cells. Chromatin immunoprecipitation revealed that A4 enhanced recruitment of SF-1 to its response element (-136 bp) upstream of CYP19 exon IIa. This, together with the findings that both estrogen receptor antagonist, ICI 182,780, and aromatase inhibitor, fadrozole, suppressed A4 and T induction of aromatase and SF-1 mRNA, indicates that the inductive effects of A4 and T are mediated by their conversion to estrogens. Exposure of endometrial cells to A4 may enhance CYP19 gene expression through its aromatization to estrogens.
    Journal of Clinical Endocrinology &amp Metabolism 07/2008; 93(9):3471-7. · 6.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aromatase (product of CYP19 gene), the critical enzyme in estrogen biosynthesis, is up-regulated in 70% of all breast cancers and is highly correlated with cyclooxygenase 2 (COX-2), the rate-determining enzyme in prostanoid biosynthesis. Expression of COX-2 also is correlated with the oncogene HER-2/neu. The efficacy of current endocrine therapies for breast cancer is predicted only if the tumor contains significant amounts of estrogen receptor. Because the progesterone receptor (PR) is an estrogen-induced target gene, it has been suggested that its presence may serve as an indicator of estrogen receptor functional capacity and the differentiation state of the tumor. In the present study, we tested the hypothesis that PR serves a crucial protective role by antagonizing inflammatory response pathways in the breast. We observed that progesterone antagonized the stimulatory effects of cAMP and IL-1beta on aromatase, COX-2, and HER-2/neu expression in T47D breast cancer cells. These actions of progesterone were associated with increased expression of the nuclear factor-kappaB inhibitor, IkappaBalpha. In 28 breast cancer cell lines, IkappaBalpha expression was positively correlated with PR mRNA levels; overexpression of a phosphorylation-defective mutant of IkappaBalpha inhibited expression of aromatase, COX-2, and HER-2/neu. Moreover, in breast cancer cell lines cultured in the absence of progesterone, up-regulation of endogenous PR caused decreased expression of aromatase, COX-2, and HER-2/neu expression, whereas down-regulation of endogenous PR resulted in a marked induction of aromatase and HER-2/neu mRNA. Collectively, these findings suggest that PR plays an important antiinflammatory role in breast cancer cells via ligand-dependent and ligand-independent mechanisms.
    Molecular Endocrinology 06/2008; 22(8):1812-24. · 4.75 Impact Factor
  • Dongyuan Liu, Ming Yi, Margaret Smith, Carole R Mendelson
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of the human surfactant protein-A2 (hSP-A2) gene is lung specific, occurs in type II and Clara cells, and is developmentally and hormonally regulated in fetal lung. Using transfected human fetal type II cells, we previously observed that approximately 300 bp of 5'-flanking DNA mediated cAMP and interleukin-1 (IL-1) stimulation and dexamethasone (Dex) inhibition of hSP-A2 promoter activity. This region contains response elements for estrogen-related receptor alpha element (ERRE, -241 bp), thyroid transcription factor (TTF)-1/Nkx2.1 (TTF-binding protein, -171 bp), upstream stimulatory factor 1/2 (E-box, -80 bp), and stimulatory protein (Sp) 1 (G/T-box, -62 bp), which are essential for basal and cAMP induction of hSP-A2 expression. To define genomic regions necessary for developmental, hormonal, and tissue-specific regulation of hSP-A2 expression in vivo, we analyzed transgenic mice carrying hGH reporter genes comprised of 313 bp of hSP-A2 gene 5'-flanking DNA +/- mutation in the TBE or 175 bp of 5'-flanking DNA, containing TBE, E-box and G/T-box, but lacking ERRE. Transgenes containing 313 or 175 bp of hSP-A2 5'-flanking DNA were expressed in a lung cell-specific manner and developmentally regulated in concert with the endogenous mouse SP-A gene. In cultured lung explants from hSP-A(-313):hGH transgenic fetal mice, cAMP and IL-1 induced and Dex inhibited transgene expression. However, the 175-bp hSP-A2 genomic region was insufficient to mediate hormonal regulation of hSP-A2 promoter activity. The finding that expression of the hSP-A(-313TBEmut):hGH transgene was essentially undetectable in fetal lung and was not hormonally regulated in transgenic fetal lung explants underscores the critical importance of the TBE in lung cell-specific, developmental, and hormonal regulation of hSP-A2 gene expression.
    AJP Lung Cellular and Molecular Physiology 06/2008; 295(2):L264-71. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant up-regulation of aromatase in eutopic endometrium and implants from women with endometriosis has been reported. Aromatase induction may be mediated by increased cyclooxygenase-2 (COX-2). Recently, we demonstrated that progesterone receptor (PR)-A and PR-B serve an antiinflammatory role in the uterus by antagonizing nuclear factor kappaB activation and COX-2 expression. PR-C, which antagonizes PR-B, is up-regulated by inflammation. Although estrogen receptor alpha (ERalpha) is implicated in endometriosis, an antiinflammatory role of ERbeta has been suggested. We examined stage-specific expression of aromatase, COX-2, ER, and PR isoform expression in eutopic endometrium, implants, peritoneum, and endometrioma samples from endometriosis patients. Endometrial and peritoneal biopsies were obtained from unaffected women and those with fibroids. Aromatase expression in eutopic endometrium from endometriosis patients was significantly increased compared with controls. Aromatase expression in endometriosis implants was markedly increased compared with eutopic endometrium. Aromatase mRNA levels were increased significantly in red implants relative to black implants and endometrioma cyst capsule. Moreover, COX-2 expression was increased in implants and in eutopic endometrium of women with endometriosis as compared with control endometrium. As observed for aromatase mRNA, the highest levels of COX-2 mRNA were found in red implants. The ratio of ERbeta/ERalpha mRNA was significantly elevated in endometriomas compared with endometriosis implants and eutopic endometrium. Expression of PR-C mRNA relative to PR-A and PR-B mRNA was significantly increased in endometriomas compared with eutopic and control endometrium. PR-A protein was barely detectable in endometriomas. Thus, whereas PR-C may enhance disease progression, up-regulation of ERbeta may play an antiinflammatory and opposing role.
    Endocrinology 04/2008; 149(3):1190-204. · 4.72 Impact Factor

Publication Stats

6k Citations
764.27 Total Impact Points

Institutions

  • 1983–2013
    • University of Texas Southwestern Medical Center
      • • Department of Internal Medicine
      • • Department of Biochemistry
      • • Department of Obstetrics and Gynecology
      • • Green Center for Reproductive Biology Sciences
      Dallas, Texas, United States
  • 2008
    • University of Florida
      • Department of Obstetrics and Gynecology
      Gainesville, FL, United States
  • 2007
    • University of Texas Health Science Center at San Antonio
      San Antonio, Texas, United States
  • 1982–1996
    • Texas Tech University Health Sciences Center
      • • Department of Pediatrics
      • • Department of Obstetrics and Gynecology
      Lubbock, TX, United States
  • 1994
    • Yale University
      • Department of Pediatrics
      New Haven, CT, United States