Miwon Son

KAKEN Pharmaceutical Co.,Ltd, New York, New York, United States

Are you Miwon Son?

Claim your profile

Publications (26)62.76 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional dyspepsia (FD) is a prevalent idiopathic upper gastrointestinal (GI) disorder characterized by diverse symptomatology including epigastric pain or discomfort, postprandial fullness, and early satiety. Although its pathophysiological mechanisms have not yet been fully established, the available studies suggest that the etiology of FD is invariably multifactorial. Benachio-F(®) (BF) is a proprietary liquid formulation of 7 herbal extracts that has been proposed to address this multifactorial etiology using multi-drug phytotherapy. The pharmacological effects of BF, in comparison with those of two other herbal products (Whalmyungsu(®); WM and Iberogast(®); IB) were evaluated in rats. In a laparotomy-induced rat model of delayed GI transit, BF significantly accelerated the delayed gastric emptying caused by morphine, apomorphine, and cisplatin, and also significantly increased mean gastric transit, as compared to the control animals. BF markedly increased gastric accommodation in rats and produced higher gastric volume values than did the control treatment. The effects of BF were generally comparable or superior to those of WM and IB in these models. Furthermore, BF significantly stimulated biliary flow, as compared to the control treatment. These results indicated that BF might have great potential as an effective phytotherapeutic agent capable of reducing GI symptoms and increasing quality of life in FD patients.
    Biomolecules and Therapeutics 07/2015; 23(4):350-6. DOI:10.4062/biomolther.2015.035 · 0.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Topical fungal infections can become severe if left untreated. Efficient treatment modalities for topical fungal infections aid the penetration of antifungal agents deep into viable skin layers. Terbinafine is a fungicidal agent that inhibits ergosterol, an essential fungal component. The main objective of this study was to evaluate skin permeation and retention of a terbinafine-loaded solution containing chitosan as a film former. Comparative assessment of skin permeation and retention was performed using a prepared formulation (DA 5505) and marketed formulations of terbinafine in murine and porcine skin. To mimic fungal infection of skin, keratinized skin was induced in NC/Nga mice. In comparison with the marketed formulations, DA 5505 exhibited significantly better skin permeation. The flux, permeation coefficient, and enhancement ratio of terbinafine were remarkably increased by DA 5505 in comparison with the marketed formulations, and lag time was dramatically reduced. DA 5505 significantly increased cumulative terbinafine retention in viable skin layers in comparison with the marketed solution, suggesting enhanced efficacy. Furthermore, DA 5505 exhibited superior skin permeation in normal skin and keratinized skin. Thus, the DA 5505 formulation has the potential to effectively deliver terbinafine to superficial and deep cutaneous fungal infections.
    CHEMICAL & PHARMACEUTICAL BULLETIN 05/2015; DOI:10.1248/cpb.c15-00108 · 1.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DA-9701, a new botanical gastroprokinetic agent, has potential for the management of delayed gastric emptying in Parkinson's disease if it has no central anti-dopaminergic activity. Therefore, we examined the pharmacokinetics of DA-9701 components having dopamine D2 receptor antagonizing activity, tetrahydropalmatine (THP) and tetrahydroberberine (THB), following various oral doses (80-328 mg/kg) of DA-9701. The distribution of THP and THB to the brain and/or other tissues was also evaluated after single or multiple oral administrations of DA-9701. Oral administration of DA-9701 yielded dose-proportional area under the plasma concentration-time curve (AUC0-8 h) and maximum plasma concentration (Cmax) values for THP and THB, indicating linear pharmacokinetics (except for THB at the lowest dose). THP and THB's large tissue-to-plasma concentration ratios indicated considerable tissue distribution. High concentrations of THP and THB in the stomach and small intestine suggest an explanation for DA-9701's potent gastroprokinetic activity. The maximum concentrations of THP and THB in brain following multiple oral DA-9701 for 7 d (150 mg/kg/d) was observed at 30 min after the last oral DA-9701 treatment: 131±67.7 ng/g for THP and 6.97±4.03 ng/g for THB. Although both THP and THB pass through the blood-brain barrier, as indicated by brain-to-plasma concentration ratios greater than unity (approximately 2-4), oral administration of DA-9701 at the effective dose in humans is not expected to lead to sufficient brain concentrations to exert central dopamine D2 receptor antagonism.
    Biological & Pharmaceutical Bulletin 02/2015; 38(2):285-91. DOI:10.1248/bpb.b14-00678 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 μg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.
    Biological & Pharmaceutical Bulletin 12/2014; 38(2). DOI:10.1248/bpb.b14-00236 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DA-9801, the mixture extract of Dioscorea rhizoma and Dioscorea nipponica Makino, is a new herbal drug currently being evaluated in a phase II clinical study for the treatment of diabetic peripheral neuropathy. To assess potential drug–drug interactions between DA-9801 and metformin, we investigated the in vitro inhibitory potency of DA-9801 on metformin uptake in HEK293 cells overexpressing organic cation transporter (OCT) 1 and 2. DA-9801 inhibited OCT1- and OCT2-mediated metformin uptake in a concentration dependent manner and IC50 values for OCT1 and OCT2 were 41.8 and 108.9 μg/ml, respectively. Dioscorea nipponica Makino extract showed an inhibitory effect on OCT1- and OCT2-mediated metformin uptake and IC50 values were 33.8 and 87.1 μg/ml, respectively, which were similar to IC50 values of DA-9801. However, Dioscorea rhizoma extract slightly inhibited OCT1- and OCT2-mediated metformin uptake. The results suggest that the inhibitory effect of DA-9801 on OCT1 and OCT2 was attributable to the Dioscorea nipponica Makino extract but not to the Dioscorea rhizoma extract. However, pharmacokinetic properties of metformin measured in rats were unchanged by the co-administration of oral or intravenous DA-9801. In conclusion, DA-9801 moderately inhibited transport activity of OCT1 and OCT2 but did not show significant in vivo drug–drug interaction potential with metformin at its highest effective dose in rats.
    Journal of Pharmaceutical Investigation 12/2014; 44(6):401-409. DOI:10.1007/s40005-014-0135-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract 1. Corydaline, an isoquinoline alkaloid, is one of the major active constituents in a new prokinetic botanical agent, DA-9701. It has been recommended that preclinical pharmacokinetic studies of natural medicines include both genders. Therefore, in this study, the pharmacokinetics of corydaline in male and female rats was evaluated following intravenous and oral administration of pure corydaline or DA-9701. 2. After intravenous administration of corydaline, the area under the plasma concentration-time curve (AUC) was significantly greater (by 46.4%) in female rats compared to male rats due to a 29.3% reduction in non-renal clearance in female rats. The gender difference in corydaline hepatic metabolic clearance was supported by a significantly slower metabolism of corydaline in hepatic microsomes of female rats mediated via male-specific (CYP2C11 and CYP3A2) or male-dominant (CYP3A1) CYP isozymes. 3. Following oral administration of pure corydaline or DA-9701, the AUC and Cmax values of corydaline in female rats were significantly greater (by 793% and 466% increase for corydaline administration or by 501% and 143% increase for DA-9701 administration) than in male rats. Greater F values of corydaline in female rats could be due to smaller hepatic first-pass extraction as a result of slower hepatic metabolism of corydaline. 4. However, we observed a comparable disappearance of corydaline in male and female human liver microsomes, consistent with little gender difference in CYP2C9 and CYP3A activities in humans compared to that in rats. Thus, gender differences in corydaline metabolism are not expected to occur in humans.
    Xenobiotica 11/2014; 45(5):1-8. DOI:10.3109/00498254.2014.988772 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Drug transporters play important roles in the absorption, distribution, and elimination of drugs and thereby, modulate drug efficacy and toxicity. With a growing use of poly pharmacy, concurrent administration of herbal extracts that modulate transporter activities with drugs can cause serious adverse reactions. Therefore, prediction and evaluation of drug-drug interaction potential is important in the clinic and in the drug development process. DA-9801, comprising a mixed extract of Dioscoreae rhizoma and Dioscorea nipponica Makino, is a new standardized extract currently being evaluated for diabetic peripheral neuropathy in a phase II clinical study. Method The inhibitory effects of DA-9801 on the transport functions of organic cation transporter (OCT)1, OCT2, organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) were investigated in HEK293 or LLC-PK1 cells. The effects of DA-9801 on the pharmacokinetics of relevant substrate drugs of these transporters were also examined in vivo in rats. Results DA-9801 inhibited the in vitro transport activities of OCT1, OCT2, OAT3, and OATP1B1, with IC50 values of 106, 174, 48.1, and 273 μg/mL, respectively, while the other transporters were not inhibited by 300 μg/mL DA-9801. To investigate whether this inhibitory effect of DA-9801 on OCT1, OCT2, and OAT3 could change the pharmacokinetics of their substrates in vivo, we measured the pharmacokinetics of cimetidine, a substrate for OCT1, OCT2, and OAT3, and of furosemide, a substrate for OAT1 and OAT3, by co-administration of DA-9801 at a single oral dose of 1,000 mg/kg. Pre-dose of DA-9801 5 min or 2 h prior to cimetidine administration decreased the Cmax of cimetidine in rats. However, DA-9801 did not affect the elimination parameters such as half-life, clearance, or amount excreted in the urine, suggesting that it did not inhibit elimination process of cimetidine, which is governed by OCT1, OCT2, and OAT3. Moreover, DA-9801 did not affect the pharmacokinetic characteristics of furosemide, as evidenced by its unchanged pharmacokinetic parameters. Conclusion Inhibitory effects of DA-9801 on OCT1, OCT2, and OAT3 observed in vitro may not necessarily translate into in vivo herb-drug interactions in rats even at its maximum effective dose.
    BMC Complementary and Alternative Medicine 07/2014; 14(1):251. DOI:10.1186/1472-6882-14-251 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims DA-9701 is a newly developed drug made from the vegetal extracts of Pharbitidis semen and Co-rydalis tuber. The aim of this study was to evaluate the effect of DA-9701 on colorectal distension (CRD)-induced visceral hypersensitivity in a rat model. Methods Male Sprague-Dawley rats were subjected to neonatal colon irritation (CI) using CRD at 1 week after birth (CI group). At 6 weeks after birth, CRD was applied to these rats with a pressure of 20 to 90 mm Hg, and changes in the mean arterial pressure (MAP) were measured at baseline (i.e., without any drug administration) and after the administration of different doses of DA-9701. Results In the absence of DA-9701, the MAP changes after CRD were significantly higher in the CI group than in the control group at all applied pressures. In the control group, MAP changes after CRD were not significantly affected by the administration of DA-9701. In the CI group, however, the administration of DA-9701 resulted in a significant decrease in MAP changes after CRD. The administration of DA-9701 at a dose of 1.0 mg/kg produced a more significant decrease in MAP changes than the 0.3 mg/kg dose. Conclusions The administration of DA-9701 resulted in a significant increase in pain threshold in rats with CRD-induced visceral hypersensitivity.
    Gut and liver 07/2014; 8(4):388-93. DOI:10.5009/gnl.2014.8.4.388 · 1.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dioscorea japonica Thunb., traditionally used in folk medicine in Korea for the treatment of hyperglycemia, is known to have biological activity. However, few analytical methods suitable for rapid assessment of constituents of D. japonica rhizomes have been reported. A high-performance liquid chromatography method coupled with variable wavelength ultraviolet detection was developed for the determination of eight constituents of D. japonica rhizome. The separation was performed efficiently on a hydrophilic interaction liquid chromatography column by gradient elution with acetonitrile and water. Calibration curves showed excellent linear regression correlation levels (R 2 > 0.9999) within the range of tested concentrations. Intra- and inter-day variations, evaluated by determining relative standard deviations, were below 1.71%. Constituent recovery rates were 93.37–104.24% with relative standard deviations of 0.55–1.98% for spiked D. japonica samples. The developed method was suitable for the qualitative and quantitative determination of the major components in D. japonica.
    Analytical Letters 03/2014; 47(6). DOI:10.1080/00032719.2013.862628 · 0.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract 1. Few studies describing the pharmacokinetic properties of chlorogenic acid (CA) and corydaline (CRD) which are marker compounds of a new prokinetic botanical agent, DA-9701, have been reported. The aim of the present study is to evaluate the pharmacokinetic properties CA and CRD following intravenous and oral administration of pure CA (1-8 mg/kg) or CRD (1.1-4.5 mg/kg) and their equivalent dose of DA-9701 to rats. 2. Dose-proportional AUC and dose-independent clearance (10.3-12.1 ml/min/kg) of CA were observed following its administration. Oral administration of CA as DA-9701 did not influence the oral pharmacokinetic parameters of CA. Incomplete absorption of CA, its decomposition in the gastrointestinal tract, and/or pre-systemic metabolism resulted in extremely low oral bioavailability (F) of CA (0.478-0.899%). 3. CRD showed greater dose-normalized AUC in the higher dose group than that in lower dose group(s) after its administration due to saturation of its metabolism via decreased non-renal clearance (by 51.3%) and first-pass extraction. As a result, the F of CRD following 4.5 mg/kg oral CRD (21.1%) was considerably greater than those of the lower dose groups (9.10 and 13.8%). However, oral administration of CRD as DA-9701 showed linear pharmacokinetics as a result of increased AUC and F in lower-dose groups (by 182% and 78.5%, respectively) compared to those of pure CRD. The greater oral AUC of CRD for DA-9701 than for pure CRD could be due to decreased hepatic and/or GI first-pass extraction of CRD by other components in DA-9701.
    Xenobiotica 01/2014; 44(7). DOI:10.3109/00498254.2013.874610 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dioscin is a biologically active steroidal saponin with anticancer and hepatoprotective effects. A rapid, selective, and sensitive liquid chromatographic method with electrospray ionization tandem mass spectrometry was developed for the quantification of dioscin in rat plasma. Dioscin was extracted from rat plasma using ethyl acetate at acidic pH. The analytes were separated on a Halo C18 column using gradient elution of acetonitrile and 0.1% formic acid and detected by tandem mass spectrometry in selected reaction monitoring mode. The standard curve was linear ( = 0.998) over the concentration range of 1-100 ng/mL. The lower limit of quantification was 1.0 ng/mL using 50 of plasma sample. The coefficient of variation and relative error for intra- and inter-assay at four QC levels were 1.3 to 8.0% and -5.4 to 10.0%, respectively. This method was applied successfully to the pharmacokinetic study of dioscin after oral administration of dioscin at a dose of 29.2 mg/kg in male Sprague-Dawley rats.
    Mass Spectrometry Letters 09/2013; 4(3). DOI:10.5478/MSL.2013.4.3.55
  • Source
    Yong Sam Kwon · Miwon Son
    [Show abstract] [Hide abstract]
    ABSTRACT: Motilitone(®) (DA-9701) is a new herbal drug that was launched for the treatment of functional dyspepsia in December 2011 in Korea. The heterogeneous symptom pattern and multiple causes of functional dyspepsia have resulted in multiple drug target strategies for its treatment. DA-9701, a compound consisting of a combination of Corydalis Tuber and Pharbitidis Semen, has being developed for treatment of functional dyspepsia. It has multiple mechanisms of action such as fundus relaxation, visceral analgesia, and prokinetic effects. Furthermore, it was found to significantly enhance meal-induced gastric accommodation and increase gastric compliance in dogs. DA-9701 also showed an analgesic effect in rats with colorectal distension induced visceral hypersensitivity and an antinociceptive effect in beagle dogs with gastric distension-induced nociception. The pharmacological effects of DA-9701 also include conventional effects, such as enhanced gastric emptying and gastrointestinal transit. The safety profi le of DA-9701 is also preferable to that of other treatments.
    Biomolecules and Therapeutics 05/2013; 21(3):181-189. DOI:10.4062/biomolther.2012.096 · 0.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DA-9801, the mixture extract of Dioscoreae rhizoma and Dioscorea nipponica Makino, is a new herbal drug currently being evaluated in a phase II clinical study for the treatment of diabetic peripheral neuropathy in Korea. The inhibitory potentials of DA-9801, D. rhizoma extract, D. nipponica Makino extract, and dioscin, an active component of DA-9801, on eight human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes were investigated in human liver microsomes using liquid chromatography-tandem mass spectrometry. DA-9801 showed slight inhibition of CYP1A2, CYP2C8, UGT1A1, and UGT1A9 enzyme activities with IC(50) values of 396.4, 449.9, 226.0, and 408.8 μg/mL, respectively. D. rhizoma extract showed negligible inhibition of CYP and UGT activities, but D. nipponica extract slightly inhibited CYP1A2, CYP2C8, CYP2C9, UGT1A1, and UGT1A9 activities with IC(50) values of 264.2, 237.1, 206.8, 302.4, and 383.1 μg/mL, respectively. DA-9801 showed volume per dose index values of 0.44-0.88 L for a 200-mg dose, suggesting that they may not cause the inhibition of the metabolism of CYP1A2, CYP2C8, UGT1A1, and UGT1A9-catalyzed drugs in humans. These results suggest that the administration of DA-9801 in human may not cause clinically relevant inhibition of these enzymes.
    Archives of Pharmacal Research 02/2013; 36(1). DOI:10.1007/s12272-013-0014-9 · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corydaline is a pharmacologically active isoquinoline alkaloid isolated from Corydalis tubers. It exhibits the antiacetylcholinesterase, antiallergic, antinociceptive, and gastric emptying activities. The purposes of this study were to establish in vitro metabolic pathways of corydaline in human liver microsomes and hepatocytes by identification of their metabolites using liquid chromatography-ion trap mass spectrometry. Human liver microsomal incubation of corydaline in the presence of an NADPH-generating system resulted in the formation of nine metabolites, namely, four O-desmethylcorydaline [M1 (yuanhunine), M2 (9-O-desmethylcorydaline), M3 (isocorybulbine), and M4 (corybulbine)], three di-O-desmethylcorydaline [M5 (9,10-di-O-desmethylcorydaline), M6 (2,10-di-O-desmethylcorydaline), and M7 (3,10-di-O-desmethylcorydaline)], M8 (hydroxyyuanhunine), and M9 (hydroxycorydaline). Incubation of corydaline in human hepatocytes produced four metabolites including M1, M5, M6, and M9. O-Demethylation and hydroxylation were the major metabolic pathways for the metabolism of corydaline in human liver microsomes and hepatocytes.
    Journal of Separation Science 05/2012; 35(9):1102-9. DOI:10.1002/jssc.201101094 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC(50)) values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol 1'-hydroxylation with an inhibition constant (K(i)) value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol 1'-hydroxylation, with a K(i) value of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC(50) equivalent concentration (volume per dose index) value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate the in vivo extent of the observed in vitro interactions.
    Evidence-based Complementary and Alternative Medicine 04/2012; 2012:650718. DOI:10.1155/2012/650718 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corydaline is a bioactive alkaloid with various antiacetylcholinesterase, antiallergic, and antinociceptive activities found in the medicinal herb Corydalis Tubers. The inhibitory potential of corydaline on the activities of seven major human cytochrome P450 and four UDP-glucuronosyltransferase enzymes in human liver microsomes was investigated using LC-tandem MS. Corydaline was found to inhibit CYP2C19-catalyzed S-mephenytoin-4'-hydroxylatoin and CYP2C9-catalyzed diclofenac 4-hydroxylation, with K(i) values of 1.7 and 7.0 mM, respectively. Corydaline also demonstrated moderate inhibition of UGT1A1-mediated 17b-estradiol 3-glucuronidation and UGT1A9-mediated propofol glucuronidation with K(i) values of 57.6 and 37.3 mM, respectively. In the presence of corydaline, CYP3A-mediated midazolam hydroxylation showed a decrease with increasing preincubation time in a dose-dependent manner with K(i) values of 30.0 mM. These in vitro results suggest that corydaline should be evaluated for potential pharmacokinetic drug interactions in vivo due to potent inhibition of CYP2C19 and CYP2C9.
    Molecules 12/2011; 16(8):6591-602. DOI:10.3390/molecules16086591 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DA-9701, a novel prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber, has strong prokinetic effects, and enhances gastric compliance in conscious dogs. In this study, the effects of DA-9701 on gastric accommodation were studied in conscious dogs. Beagle dogs with an implanted gastric cannula in the stomach were used in this study. After an overnight fast, the dogs received DA-9701 orally, or served as a positive control that received sumatriptan or a negative control before ingestion of a meal. The basal and postprandial gastric volumes were monitored at a constant operating pressure using an electronic barostat. To investigate the long-lasting effects on increased postprandial gastric volume, the area under the volume versus time curve (AUC) was calculated. DA-9701 significantly increased the basal gastric volume compared to the negative controls (P < 0.05); the effects were comparable to sumatriptan. DA-9701 and sumatriptan significantly increased gastric accommodation compared to the negative control (P < 0.05). In the negative control, the gastric volume reached the maximal volume 40 min after the meal, and then gradually decreased. However, with DA-9701, the increased gastric volume remained significantly elevated for 60 min postprandially (P < 0.05). DA-9701 significantly increased the value of AUC compared to the negative control; this was observed during both the early and late postprandial phases (P < 0.05). A novel prokinetic agent, DA-9701, improved gastric accommodation by increasing the postprandial gastric volume; these effects persisted for 60 min after a meal.
    Journal of Gastroenterology and Hepatology 09/2011; 27(4):766-72. DOI:10.1111/j.1440-1746.2011.06924.x · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic neuropathy is characterized by axonal degeneration, demyelination, and atrophy in association with failed axonal regeneration, remyelination, and synaptogenesis. Recent reports suggest that reduced levels of nerve growth factor (NGF) may play a significant role in the pathogenesis of diabetic polyneuropathy. In this study, we investigated the regulation of NGF by steroid diosgenin (DG) in a diabetic neuropathy rodent model. We found that DG, the primary spirostane-type steroid in several Dioscorea species, increased NGF levels in the sciatic nerve of diabetic rats. Additionally, DG increased neurite outgrowth in PC12 cells and enhanced nerve conduction velocities in the diabetic neuropathy mouse model. DG-treated diabetic mice showed reduced disarrangement of the myelin sheath and increased area of myelinated axons by electron microscope studies and exhibited improvement in the damaged axons. Our data further suggest that DG increased the nerve conduction velocity through induction of NGF. Thus, our findings indicate that DG, a major sapogenin obtained from Dioscorea nipponica, reverses functional and ultrastructural changes and induces neural regeneration in a diabetic neuropathy model.
    Biological & Pharmaceutical Bulletin 09/2011; 34(9):1493-8. DOI:10.1248/bpb.34.1493 · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because delayed gastric emptying and impaired gastric accommodation are regarded as pathophysiological mechanisms underlying functional dyspepsia (FD), prokinetics and fundic relaxants have been suggested as a new treatment for FD. We isolated tetrahydroberberine (THB), an isoquinoline alkaloid (5,8,13,13a-tetrahydro-9,10-dimethoxy-6H-benzo[g]-1,3-benzodioxolo[5,6-a]quinolizine) from Corydalis tuber, and found that it has micromolar affinity for dopamine D(2) (pK(i) = 6.08) and 5-HT(1A) (pK(i) = 5.38) receptors but moderate to no affinity for other relevant serotonin receptors (i.e., 5-HT(1B), 5-HT(1D), 5-HT(3), and 5-HT(4); pK(i) < 5.00). Oral administration of THB not only resulted in significantly accelerated gastric emptying of normal rats in a bell-shaped relationship, with a maximal efficacy at a dose of 30 μg/kg, but also restored the delayed gastric emptying caused by apomorphine, which might be mediated by an antidopaminergic effect. Data from electromyography indicated enhanced motor function of the upper gastrointestinal tract by THB, which occurred through strengthening contractility and shortening the contraction interval. Furthermore, in rats stressed by repeated restraint, a significantly higher shift in the pressure-volume curve by THB (10 μg/kg, p < 0.05), which was inhibited by [O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY-100635), a 5-HT(1A) antagonist, and N(ω)-nitro-l-arginine methyl ester, a nitric-oxide synthase inhibitor but not a vasoactive intestinal peptide antagonist, was observed. Oral administration of THB resulted in a drastic increase of gastric accommodation in Beagle dogs. Area under the volume versus time curve was increased significantly by THB (30 μg/kg, p < 0.01) and comparable with that of sumatriptan (3 mg/kg), a potent fundic relaxant. Taken together, our data suggested that THB, with D(2) receptor antagonist and 5-HT(1A) receptor agonist properties, has significant potential as a therapeutic for treatment of FD.
    Journal of Pharmacology and Experimental Therapeutics 06/2011; 338(3):917-24. DOI:10.1124/jpet.111.182048 · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dioscorea japonica Thunb. has been traditionally used to treat polyuria and diabetes in Korea. We previously report the effects of Dioscorea japonica Thunb. extract on glucose control, NGF induction, and neuroprotection in a rodent diabetic model. Since the most potent fraction, DA-9801, was identified from a mixture of Dioscorea japonica Thunb. (DJ) and Dioscorea nipponica Makino (DN) following bioactivity-guided fractionation, here, we investigated the potential mechanism of the extract activity against diabetic peripheral neuropathy (DPN). A 1:3 mixture of DJ and DN was extracted with ethanol (DA-9801) and further fractionated into an ethylacetate-soluble fraction (DA-9801E). Effects of these extracts on neurite outgrowth were measured in PC-12 cells and DRG neurons. Effects on cell viability and TrkA phosphorylation were evaluated in PC-12 cells. NGF induction effect was determined in primary Schwann cells as well as IMS32 cells (immortalized Schwann cells). No cytotoxicity was observed in PC-12 cells at the concentration below 500 μg/ml of either DA-9801 or DA-9801E. DA-9801 and DA-9801E at 100 μg/ml and 10 μg/ml, respectively, showed a significant effect on neurite outgrowth in PC-12 cells and DRG neurons in the presence of or absence a low concentration of NGF (2 ng/ml). The Trk-A phosphorylation effect of DA9801 was confirmed in PC-12 cells. An NGF induction effect of these extracts was not detected in either IMS-32 cells, or primary Schwann cells. The NGF agonistic activity of DA-9801 and DA-9801E was demonstrated, which may contribute to their neuroprotective effect against DPN. Studies of the detailed mechanism of these extracts as well as identification of the active components are warranted for the development of an anti-DPN drug from DJ and DN.
    Journal of ethnopharmacology 05/2011; 137(1):312-9. DOI:10.1016/j.jep.2011.05.032 · 2.94 Impact Factor