M Christine Zink

Johns Hopkins University, Baltimore, Maryland, United States

Are you M Christine Zink?

Claim your profile

Publications (130)627.4 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Self-injurious behavior (SIB) is a common comorbidity of psychiatric disorders but there is a dearth of information about neurological mechanisms underlying the behavior, and few animal models exist. SIB in humans is characterized by any intentional self-directed behavior that leads to wounds, whereas in macaques it is not always accompanied by wounds. We describe a cohort of rhesus macaques displaying SIB as adults, in which changes within the central nervous system were associated with the SIB. In these macaques, increases in central nervous system striatal dopamine (DA) receptor binding (BPND) measured by positron emission tomography (PET) [11C]raclopride imaging correlated with severity of wounding (rs=0.662, P=0.014). Furthermore, utilizing standardized cognitive function tests, we showed that impulsivity (stop signal reaction time, SSRT) and deficits in attentional set shifting (intra-/extradimensional shift) were correlated with increased severity of SIB (rs=0.563, P=0.045 and rs=0.692, P=0.009, respectively). We also tested the efficacy of guanfacine, an α2A adrenergic agonist that acts to improve postsynaptic transmission of neuronal impulses, in reducing SIB. A subset of these animals were enrolled in a randomized experimenter-blinded study that demonstrated guanfacine decreased the severity of wounding in treated animals compared with vehicle-only-treated controls (P=0.043), with residual beneficial effects seen for several weeks after cessation of therapy. Animals with the highest severity of SIB that received guanfacine also showed the most significant improvement (rs=-0.761, P=0.009). The elevated PET BPND was likely due to low intrasynaptic DA, which in turn may have been improved by guanfacine. With underlying physiology potentially representative of the human condition and the ability to affect outcome measures of disease using pharmacotherapy, this model represents a unique opportunity to further our understanding of the biology and treatment of SIB in both animals and humans.
    Translational Psychiatry 05/2015; 5(5):e567. DOI:10.1038/tp.2015.61 · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Sensitive assays are needed for detection of residual HIV in patients with undetectable plasma viral loads to determine if eradication strategies are effective. The gold standard quantitative viral outgrowth assay (QVOA) underestimates the magnitude of the viral reservoir. We sought to determine whether xenograft of leukocytes from HIV-1 infected patients with undetectable plasma viral loads into immunocompromised mice would result in viral amplification. Methods. Peripheral blood mononuclear cells (PBMCs) or purified CD4+ T cells from HIV/SIV infected subjects with undetectable plasma viral loads were adoptively transferred into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. The mice were monitored for viremia following depletion of human CD8+ T cells to minimize antiviral activity. In some cases humanized mice were also treated with activating anti-CD3 antibody. Results. With this murine viral outgrowth assay (MVOA), we successfully amplified replication-competent HIV-1/SIV from all subjects tested including 5 HIV+ patients on suppressive antiretroviral therapy (ART) and 6 elite controllers or suppressors (ES) who maintain undetectable viral loads without ART, including an ES from whom we were unable to recover virus by QVOA. Conclusions. Our results suggest that the MVOA has the potential to serve as a powerful tool to identify residual HIV in patients with undetectable viral loads.
    The Journal of Infectious Diseases 04/2015; DOI:10.1093/infdis/jiv230 · 5.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-induced damage to the CNS remains a major challenge for over 30 million people in the world despite the successes of combined antiretroviral therapy in limiting viral replication. Predicting development and progression of HIV-associated CNS disease is crucial because prevention and early intervention could be more effective than attempts to promote repair. The SIV/macaque model is the premier platform to study HIV neuropathogenesis, including discovery of predictive factors such as neuroprotective host genes and both blood and CSF biomarkers that precede and predict development of SIV CNS disease. This report details the role of macaque MHC class I genes, longitudinal alterations in biomarkers in the circulation, and expression of inflammatory and neuronal damage markers in CSF using samples from SIV-inoculated pigtailed macaques collected during acute, asymptomatic, and terminal stages of infection. Copyright © 2015 Elsevier B.V. All rights reserved.
    European journal of pharmacology 03/2015; 759. DOI:10.1016/j.ejphar.2015.03.018 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the kynurenine pathway (KP) of tryptophan catabolism likely contributes to HIV-associated neurological disorders. However, KP activation in brain tissue during HIV infection has been understudied, and the effect of combination antiretroviral therapy (cART) on KP induction in the brain is unknown. To examine these questions, tryptophan, kynurenine, 3-hydroxykynurenine, quinolinic acid, and serotonin levels were measured longitudinally during SIV infection in the striatum and CSF from untreated and cART-treated pigtailed macaques. Messenger RNA (mRNA) levels of KP enzymes also were measured in the striatum. In untreated macaques, elevations in KP metabolites coincided with transcriptional induction of upstream enzymes in the KP. Striatal KP induction was also temporally associated-but did not directly correlate-with serotonin losses in the brain. CSF quinolinic acid/tryptophan ratios were found to be the earliest predictor of neurological disease in untreated SIV-infected macaques, outperforming other KP metabolites as well as the putative biomarkers interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). Finally, cART did not restore KP metabolites to control levels in the striatum despite the control of the virus, though CSF metabolite levels were normalized in most animals. Overall, these results demonstrate that cerebral KP activation is only partially resolved with cART and that CSF QUIN/TRP ratios are an early, predictive biomarker of CNS disease.
    Journal of NeuroVirology 03/2015; 21(4). DOI:10.1007/s13365-015-0334-2 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immune pressure exerted by MHC class I-restricted cytotoxic T cells drives the development of viral escape mutations, thereby regulating HIV disease progression. Nonetheless, the relationship between host immunity and HIV central nervous system (CNS) disease remains poorly understood. The simian immunodeficiency virus (SIV) macaque model recapitulates key features of HIV infection including development of AIDS and CNS disease. To investigate cell-mediated immunity regulating SIV CNS disease progression, we compared the incidence of SIV encephalitis and the influence of MHC class I allele expression on the development of CNS disease in rhesus macaques (Macaca mulatta) versus pigtailed macaques (Macaca nemestrina). After inoculation with the immunosuppressive swarm SIV/DeltaB670 and the neurovirulent molecular clone SIV/17E-Fr, pigtailed macaques progressed more rapidly to AIDS, had higher plasma and cerebrospinal fluid (CSF) viral loads, and were more likely to progress to SIV-associated encephalitis (SIVE) compared to rhesus macaques. In addition, MHC class I alleles were neuroprotective in both species (Mamu-A*001 in rhesus macaques and Mane-A1*084:01:01 in pigtailed macaques); animals expressing these alleles were less likely to develop SIV encephalitis and correspondingly had lower viral replication in the brain. Species-specific differences in susceptibility to SIV disease demonstrated that cell mediated immune responses are critical to SIV CNS disease progression.
    Journal of NeuroVirology 02/2015; 21(2). DOI:10.1007/s13365-015-0313-7 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elevated cerebrospinal fluid (CSF) levels of markers of oxidative stress, neuronal injury, and inflammation and decreased neurotransmitter levels have been reported in HIV-associated neurocognitive disorders (HAND). Minocycline may have a neuroprotective effect by inhibiting inducible nitric oxide synthase, which produces nitric oxide, a compound that induces oxygen free radical production. In A5235, “Phase II, Randomized, Placebo-Controlled, Double-Blind Study of Minocycline in the Treatment of HIV-Associated Cognitive Impairment,” minocycline was not associated with cognitive improvement, but the effect on the above CSF measures was not examined previously. The objective of this study was to examine the effect of minocycline on markers of oxidative stress, neuronal injury, neurotransmitter levels, and inflammation from CSF in participants in A5235. One hundred seven HIV+ individuals received either minocycline 100 mg or placebo orally every 12 h for 24 weeks. Twenty-one HIV+ individuals received the optional lumbar punctures. Lipid and protein markers of oxidative stress (e.g., ceramides and protein carbonyls), glutamate, neurotransmitter precursors, kynurenine metabolites, neurofilament heavy chain, and inflammatory cytokines were measured in the CSF before and after treatment. The 24-week change in ceramides was larger in a beneficial direction in the minocycline group compared to the placebo group. The two groups did not differ in the 24-week changes for other markers. These results suggest that minocycline may decrease lipid markers of oxidative stress (ceramides) in individuals with HAND; however, an effect of minocycline on other CSF markers was not observed. A larger sample size is needed to further validate these results.
    Journal of NeuroVirology 11/2014; 20(6). DOI:10.1007/s13365-014-0292-0 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Effective combined antiretroviral therapy (cART) in HIV-infected patients has made HIV a treatable infection; however, debilitating HIV-associated neurocognitive disorders (HAND) can still affect approximately 50 % of HIV-infected individuals even under cART. While cART has greatly reduced the prevalence of the most severe form of HAND, milder forms have increased in prevalence, leaving the total proportion of HIV-infected individuals suffering from HAND relatively unchanged. In this study, an in vitro drug screen identified fluconazole and paroxetine as protective compounds against HIV gp120 and Tat neurotoxicity. Using an accelerated, consistent SIV/macaque model of HIV-associated CNS disease, we tested the in vivo neuroprotective capabilities of combination fluconazole/paroxetine (FluPar) treatment. FluPar treatment protected macaques from SIV-induced neurodegeneration, as measured by neurofilament light chain in the CSF, APP accumulation in axons, and CaMKIIα in the frontal cortex, but did not significantly reduce markers of neuroinflammation or plasma or CNS viral loads. Since HIV and SIV neurodegeneration is often attributed to accompanying neuroinflammation, this study provides proof of concept that neuroprotection can be achieved even in the face of ongoing neuroinflammation and viral replication.
    Journal of NeuroVirology 09/2014; 20(6). DOI:10.1007/s13365-014-0283-1 · 3.32 Impact Factor
  • Source
    Kelly A Meulendyke · Joshua D Croteau · M Christine Zink
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review In this era of modern combination antiretroviral therapy (cART) HIV-associated neurocognitive disorders (HAND) continue to affect a large portion of the infected population. In this review, we highlight recent discoveries that help to define the interplay between HIV life cycle, the innate immune system and cellular autophagy in the context of the central nervous system (CNS). Recent findings Investigators have recently elucidated themes in HAND, which place it in a unique framework. Cells of macrophage lineage and probably astrocytes play a role in disseminating virus through the CNS. Each of these cell types responds to a diverse population of constantly evolving virus existing in an inflammatory environment. This occurs though the failure of both host antiviral mechanisms, such as autophagy, and innate immunological signalling pathways to control viral replication. Summary The newest findings detailed in this review help define why HIV CNS disease is a difficult target for therapeutics and create hope that these new mechanisms may be exploited to attenuate viral replication and eliminate disease.
    Current Opinion in HIV and AIDS 09/2014; 9(6). DOI:10.1097/COH.0000000000000106 · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo.
    PLoS ONE 04/2014; 9(4):e94375. DOI:10.1371/journal.pone.0094375 · 3.23 Impact Factor
  • AIDS research and human retroviruses 04/2014; 30(4):333-4. DOI:10.1089/aid.2014.0029 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently demonstrated direct evidence of increased monoamine oxidase (MAO) activity in the brain of a simian immunodeficiency virus (SIV) model of human immunodeficiency virus (HIV)-associated central nervous system (CNS) disease, consistent with previously reported dopamine deficits in both SIV and HIV infection. In this study, we explored potential mechanisms behind this elevated activity. MAO B messenger RNA was highest in macaques with the most severe SIV-associated CNS lesions and was positively correlated with levels of CD68 and GFAP transcripts in the striatum. MAO B messenger RNA also correlated with viral loads in the CNS of SIV-infected macaques and with oxidative stress. Furthermore, in humans, striatal MAO activity was elevated in individuals with HIV encephalitis, compared with activity in HIV-seronegative controls. These data suggest that the neuroinflammation and oxidative stress caused by SIV infection in the CNS may provide the impetus for increased transcription of MAO B and that MAO, and more broadly, oxidative stress, have significant potential as therapeutic targets in CNS disease due to HIV.
    The Journal of Infectious Diseases 03/2014; 210(6). DOI:10.1093/infdis/jiu194 · 5.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-associated neurocognitive disorder (HAND), characterized by a wide spectrum of behavioral, cognitive, and motor dysfunctions, continues to affect approximately 50 % of HIV(+) patients despite the success of combination antiretroviral drug therapy (cART) in the periphery. Of note, potential toxicity of antiretroviral drugs in the central nervous system (CNS) remains remarkably underexplored and may contribute to the persistence of HAND in the cART era. Previous studies have shown antiretrovirals (ARVs) to be neurotoxic in the peripheral nervous system in vivo and in peripheral neurons in vitro. Alterations in lipid and protein metabolism, mitochondrial damage, and oxidative stress all play a role in peripheral ARV neurotoxicity. We hypothesized that ARVs also induce cellular stresses in the CNS, ultimately leading to neuronal damage and contributing to the changing clinical and pathological picture seen in HIV-positive patients in the cART era. In this report, we show that ARVs are neurotoxic in the CNS in both pigtail macaques and rats in vivo. Furthermore, in vitro, ARVs lead to accumulation of reactive oxygen species (ROS), and ultimately induction of neuronal damage and death. Whereas ARVs alone caused some activation of the endogenous antioxidant response in vitro, augmentation of this response by a fumaric acid ester, monomethyl fumarate (MMF), blocked ARV-induced ROS generation, and neuronal damage/death. These findings implicate oxidative stress as a contributor to the underlying mechanisms of ARV-induced neurotoxicity and will provide an access point for adjunctive therapies to complement ARV therapy and reduce neurotoxicity in this patient population.
    Journal of NeuroVirology 01/2014; 20(1). DOI:10.1007/s13365-013-0227-1 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The increasing use of the common marmoset (Callithrix jacchus) in research makes it important to diagnose spontaneous disease that may confound experimental studies. Bone disease and gastrointestinal disease are two major causes of morbidity and mortality in captive marmosets, but currently no effective antemortem tests are available to identify affected animals prior to the terminal stage of disease. In this study we propose that bone disease and gastrointestinal disease are associated disease entities in marmosets and aim to establish the efficacy of several economical antemortem tests in identifying and predicting disease. Tissues from marmosets were examined to define affected animals and unaffected controls. Complete blood count, serum chemistry values, body weight, quantitative radiographs, and tissue-specific biochemical markers were evaluated as candidate biomarkers for disease. Bone and gastrointestinal disease were associated, with marmosets being over seven times more likely to have either concurrent bone and gastrointestinal disease or neither disease as opposed to lesions in only one organ system. When used in tandem, serum albumin <3.5 g/dL and body weight <325 g identified 100% of the marmosets affected with concurrent bone and gastrointestinal disease. Progressive body weight loss of 0.05% of peak body weight per day predicted which marmosets would develop disease prior to the terminal stage. Bone tissue-specific tests, such as quantitative analysis of radiographs and serum parathyroid hormone levels, were effective for distinguishing between marmosets with bone disease and those without. These results provide an avenue for making informed decisions regarding the removal of affected marmosets from studies in a timely manner, preserving the integrity of research results.
    PLoS ONE 12/2013; 8(12):e82747. DOI:10.1371/journal.pone.0082747 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCAAT/enhancer binding protein (C/EBP)β, and C/EBP binding sites in the HIV/SIV- long terminal repeat (LTR) are crucial for regulating transcription and for IFNβ-mediated suppression of virus replication in macrophages, the predominant source of productive virus replication in the brain. We investigated sequence variation within the SIV-LTR C/EBP sites that may be under selective pressure in vivo and therefore associated with disease progression. Using the SIV-macaque model, we examined viral LTR sequences derived from the spleen, a site of macrophage and lymphocyte infection, and the brain from macaques euthanized at 10, 21, 42, 48 and 84 days postinoculation (p.i.). A dominant variant, DS1C/A, containing an adenine-to-guanine substitution and a linked cytosine-to-adenine substitution in the downstream (DS1) C/EBP site, was detected in the spleen at 10 days p.i. The DS1C/A genotype was not detected in the brain until 42 days p.i., after which it was the predominant replicating genotype in both brain and spleen. Functional characterization of the DS1C/A containing SIV showed increased infectivity with or without IFNβ treatment over the wild-type virus, SIV/17E-Fr. The DS1C/A C/EBP site had higher affinity for both protein isoforms of C/EBPβ compared to the wild-type DS1 C/EBP site. Cytokine expression in spleen compared to brain implicated IFNβ and IL-6 responses as part of the selective pressures contributing to emergence of the DS1C/A genotype in vivo. These studies demonstrate selective replication of virus containing the DS1C/A genotype that either emerges very early in spleen and spreads to the brain, or evolves independently in the brain when IFNβ and IL-6 levels are similar to that found in spleen earlier in infection.
    PLoS ONE 08/2012; 7(8):e42801. DOI:10.1371/journal.pone.0042801 · 3.23 Impact Factor
  • Source
    Kai Deng · M Christine Zink · Janice E Clements · Robert F Siliciano
    [Show abstract] [Hide abstract]
    ABSTRACT: Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful information for regimen selection in treating SIV-infected animals in models of therapy and virus eradication.
    Journal of Virology 08/2012; 86(20):11368-72. DOI:10.1128/JVI.01563-12 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monocytes have been categorized in three main subpopulations based on CD14 and CD16 surface expression. Classical monocytes express the CD14(++)CD16(-)CCR2(+) phenotype and migrate to inflammatory sites by quickly responding to CCL2 signaling. Here, we identified and characterized the expansion of a novel monocyte subset during HIV and SIV infection, which were undistinguishable from classical monocytes, based on CD14 and CD16 expression, but expressed significantly lower surface CCR2. Transcriptome analysis of sorted cells demonstrated that the CCR2(low/neg) cells are a distinct subpopulation and express lower levels of inflammatory cytokines and activation markers than their CCR2(high) counterparts. They exhibited impaired phagocytosis and greatly diminished chemotaxis in response to CCL2 and CCL7. In addition, these monocytes are refractory to SIV infection and suppress CD8(+) T cell proliferation in vitro. These cells express higher levels of STAT3 and NOS2, suggesting a phenotype similar to monocytic myeloid-derived cells, which suppress expansion of CD8(+) T cells in vivo. They may reflect an antiproliferative response against the extreme immune activation observed during HIV and SIV infections. In addition, they may suppress antiviral responses and thus, have a role in AIDS pathogenesis. Antiretroviral therapy in infected macaque and human subjects caused this population to decline, suggesting that this atypical phenotype is linked to viral replication.
    Journal of leukocyte biology 02/2012; 91(5):803-16. DOI:10.1189/jlb.1111579 · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-infected individuals, even with antiretroviral therapy, often display cognitive, behavioral and motor abnormalities and have decreased dopamine (DA) levels. Minocycline prevents encephalitis and neurodegeneration in SIV models, suggesting that it might also protect against nigrostriatal dopaminergic system dysfunction. Using an SIV/macaque model of HIV-associated CNS disease, we demonstrated that striatal levels of DA were significantly lower in macaques late in infection and that levels of the metabolite DOPAC also tended to be lower. DA levels declined more than its metabolites, indicating a dysregulation of DA production or catabolism. Minocycline treatment beginning at 12 but not 21 days postinoculation prevented striatal DA loss. DA decline was not due to direct loss of dopaminergic projections to the basal ganglia as there was no difference in tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter 2 or synaptophysin between minocycline-treated and untreated macaques. SIV-infected macaques had significantly higher monoamine oxidase (MAO) activity than uninfected macaques, although MAO activity was not affected by minocycline. Oxidative/nitrosative stress was examined by nitrotyrosine staining in the deep white matter and was lower in SIV-infected, minocycline-treated macaques compared with untreated macaques. These data suggest that minocycline, which has antioxidant activity, has a protective effect on DA homeostasis when administered at an appropriate time in SIV neuropathogenesis.
    Journal of Neuroimmune Pharmacology 12/2011; 7(2):454-64. DOI:10.1007/s11481-011-9332-1 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferon-β induction occurs during acute simian immunodeficiency virus (SIV) infection in the brain. We have examined expression and function of cytosolic RNA sensors, retinoic acid inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5), in vivo in the brain of our consistent, accelerated SIV-macaque model and in vitro in SIV-infected macaque macrophages to identify the pathway of type I interferon (IFN) induction. MDA5 messenger RNA (mRNA) and protein were expressed at higher levels in the brain than RIG-I, with protein expression correlating with the severity of disease from 42 until 84 days post-inoculation. The siRNA experiments reveal that mRNA expression of IFN-inducible gene MxA is dependent on MDA5, but not RIG-I. Finally, we demonstrate that SIV infection leads to the production of double-stranded RNA in vivo, which may act as the MDA5 ligand. We have shown for the first time to our knowledge the functional role of MDA5 in the innate immune response to SIV infection.
    The Journal of Infectious Diseases 10/2011; 204(7):1104-14. DOI:10.1093/infdis/jir469 · 5.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We conducted a study of minocycline to assess its safety, tolerability, and efficacy for the treatment of HIV-associated cognitive impairment. HIV-1-infected individuals with progressive neurocognitive decline were enrolled in a double-blind, placebo-controlled study of minocycline. Participants were randomized to receive minocycline 100 mg or matching placebo orally every 12 hours. The primary efficacy measure was change in a neuropsychological test composite z score (NPZ-8) from baseline to week 24. Measures of safety included the frequency of adverse events and changes over time in laboratory tests. After 50% of participants completed the double-blind phase, an interim analysis of futility for the primary outcome measure was performed, and our Data and Safety Monitoring Board recommended early study termination. A total of 107 HIV-1-infected individuals with cognitive impairment were enrolled. The minocycline group did not show improvement in the primary outcome measure (NPZ-8) (mean 24-week change = 0.12) compared to placebo (mean 24-week change = 0.17) (95% confidence interval = [-0.26, 0.39], p = 0.70). There were few severe adverse events or laboratory abnormalities in either treatment group. Minocycline was safe and well-tolerated in individuals with HIV-associated cognitive impairment, but cognitive improvement was not observed. Classification of evidence. This interventional study provides Class II evidence for the safety, tolerability, and efficacy of minocycline for the treatment of HIV-associated cognitive impairment.
    Neurology 09/2011; 77(12):1135-42. DOI:10.1212/WNL.0b013e31822f0412 · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV infection of the CNS is an early event after primary infection, resulting in neurological complications in a significant number of individuals despite antiretroviral therapy (ART). The main cells infected with HIV within the CNS are macrophages/microglia and a small fraction of astrocytes. The role of these few infected astrocytes in the pathogenesis of neuroAIDS has not been examined extensively. Here, we demonstrate that few HIV-infected astrocytes (4.7 ± 2.8% in vitro and 8.2 ± 3.9% in vivo) compromise blood-brain barrier (BBB) integrity. This BBB disruption is due to endothelial apoptosis, misguided astrocyte end feet, and dysregulation of lipoxygenase/cyclooxygenase, BK(Ca) channels, and ATP receptor activation within astrocytes. All of these alterations in BBB integrity induced by a few HIV-infected astrocytes were gap junction dependent, as blocking these channels protected the BBB from HIV-infected astrocyte-mediated compromise. We also demonstrated apoptosis in vivo of BBB cells in contact with infected astrocytes using brain tissue sections from simian immunodeficiency virus-infected macaques as a model of neuroAIDS, suggesting an important role for these few infected astrocytes in the CNS damage seen with HIV infection. Our findings describe a novel mechanism of bystander BBB toxicity mediated by low numbers of HIV-infected astrocytes and amplified by gap junctions. This mechanism of toxicity contributes to understanding how CNS damage is spread even in the current ART era and how minimal or controlled HIV infection still results in cognitive impairment in a large population of infected individuals.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 06/2011; 31(26):9456-65. DOI:10.1523/JNEUROSCI.1460-11.2011 · 6.75 Impact Factor

Publication Stats

4k Citations
627.40 Total Impact Points

Institutions

  • 1987–2015
    • Johns Hopkins University
      • • Department of Molecular and Comparative Pathobiology
      • • Department of Molecular Microbiology and Immunology
      • • Department of Pathology
      • • Department of Medicine
      • • Department of Neurology
      Baltimore, Maryland, United States
    • University of Guelph
      • Department of Pathobiology
      XIA, Ontario, Canada
  • 2011
    • University of Melbourne
      Melbourne, Victoria, Australia
  • 2007
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1988–2004
    • Johns Hopkins Medicine
      • Department of Neurology
      Baltimore, Maryland, United States
  • 1998
    • Johns Hopkins Bloomberg School of Public Health
      Baltimore, Maryland, United States
  • 1993
    • New York State
      New York City, New York, United States
  • 1990
    • Colorado State University
      Fort Collins, Colorado, United States