Publications (4)14.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously generated transgenic mice carrying a large P1 artificial chromosome (PAC160) encompassing a 160-kb segment containing the human renin gene, two upstream genes, and one downstream gene. We also previously generated mutant PAC160 constructs lacking the distal enhancer and concluded it is required to maintain baseline expression of human renin, but is not required for tissue-specific, cell-specific, and regulated expression of renin in vivo. We now report two additional transgenic lines carrying random truncations of PAC160 upstream of the renin gene. Southern and PCR mapping studies indicate that the truncation break points in the two lines are located approximately 10.4 and 2.5 kb upstream of the renin gene causing a deletion of all DNA upstream of the break. We tested the hypothesis that large-scale deletion of DNA upstream of the human renin gene including the enhancer would cause dysregulation of human renin expression. Phenotypically, these truncations cause a severe dysregulation of human renin expression, but remarkably, a preservation of the normal tissue-specific expression of the human ethanolamine kinase 2 (ETNK2) gene which lies immediately downstream of renin. Several functional binding sites for CTCF, a mammalian insulator protein, were identified in and around the renin and ETNK2 loci by gel shift and chromatin immunoprecipitation. We conclude that there are sequences in and around the renin and ETNK2 loci which act as boundaries between neighboring genes which insulate them from each other. The study illustrates the value of taking a much wider genomic perspective when studying mechanisms regulating gene expression.
    American journal of physiology. Renal physiology 09/2008; 295(3):F642-53. DOI:10.1152/ajprenal.00384.2007 · 3.25 Impact Factor
  • Huiping Li · Xiyou Zhou · Deborah R Davis · Di Xu · Curt D Sigmund ·
    [Show abstract] [Hide abstract]
    ABSTRACT: To facilitate the study of renal proximal tubules, we generated a transgenic mouse strain expressing an improved Cre recombinase (iCre) under the control of the kidney androgen-regulated protein (KAP) promoter. The transgene was expressed in the kidney of male mice but not in female mice. Treatment of female transgenic mice with androgen induced robust expression of the transgene in the kidney. We confirmed the presence of Cre recombinase activity and the cell specificity by breeding the KAP2-iCRE mice with ROSA26 reporter mice. X-Gal staining of kidney sections from male double transgenic mice showed robust staining in the epithelial cells of renal proximal tubules. beta-Gal staining in female mice became evident in proximal tubules after administration of androgen. This model of inducible Cre recombinase in the renal proximal tubule should provide a novel useful tool for studying the physiological significance of genes expressed in the renal proximal tubule. This has advantages over other current models where Cre recombinase expression is constitutive, not inducible.
    American journal of physiology. Renal physiology 07/2008; 294(6):F1481-6. DOI:10.1152/ajprenal.00064.2008 · 3.25 Impact Factor
  • Source
    Xiyou Zhou · Curt D Sigmund ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that a transcriptional chorionic enhancer (CE), previously identified to increase human renin expression in choriodecidual cells is required to mediate tissue-specific, cell-specific, and regulated expression of human renin in transgenic mice. Recombineering was used to delete the CE upstream of the renin gene alone or in combination with the kidney enhancer (KE) in a large artificial chromosome construct containing the entire human renin gene and extensive flanking sequences. Deletion of the CE had no qualitative or quantitative effect on the tissue-specific expression of human renin, nor on the cellular localization of human renin in the kidney or placenta. Combined deletion of both the CE and KE caused a decrease in the level of renal renin expression consistent with the established role of the KE. We also considered the possibility that the CE is a downstream enhancer of the KiSS1 gene, which lies directly upstream of renin and is also expressed in the placenta. Deletion of the CE alone, or the CE and KE together, had no effect on the level of KiSS1 expression in the placenta. These data provide convincing evidence that the CE is silent in vivo, at least in the mouse. The absence of a phenotype caused by deletion of the CE is consistent with the observation that the sequence is not evolutionarily conserved.
    AJP Regulatory Integrative and Comparative Physiology 03/2008; 294(2):R279-87. DOI:10.1152/ajpregu.00780.2007 · 3.11 Impact Factor
  • Xiyou Zhou · Deborah R Davis · Curt D Sigmund ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Renin is the rate-limiting enzyme in the renin-angiotensin system and thus dictates the level of the pressor hormone angiotensin-II. The classical site of renin expression and secretion is the renal juxtaglomerular cell, where its expression is tightly regulated by physiological cues. An evolutionarily conserved transcriptional enhancer located 11 kb upstream of the human RENIN gene has been reported to markedly enhance transcription in renin expressing cells in vitro. However, its importance in vivo remains unclear. We tested whether this enhancer is required for appropriate tissue- and cell-specific expression, or for physiological regulation of the human RENIN gene. To accomplish this, we used a retrofitting technique employing homologous recombination in bacteria to delete the enhancer from a 160-kb P1-artificial chromosome containing human RENIN, two upstream genes and one downstream gene, and then generated two lines of transgenic mice. We previously showed that human renin expression in transgenic mice containing the wild type construct is tightly regulated as is expression of the linked genes. Deletion of the enhancer had no effect on tissue-specific expression of human RENIN, but using the downstream gene as an internal control, found that human RENIN mRNA levels were 3-10-fold decreased compared with constructs containing the enhancer. Despite this decrease in expression, renin protein remained localized to renal juxtaglomerular cells and was appropriately regulated by cues that either increase or decrease expression of renin. Our results suggest that sequences other than the enhancer may be necessary for tissue-specific, cell-specific, and regulated expression of human RENIN.
    Journal of Biological Chemistry 12/2006; 281(46):35296-304. DOI:10.1074/jbc.M608055200 · 4.57 Impact Factor