Roger J Colbran

Vanderbilt University, Нашвилл, Michigan, United States

Are you Roger J Colbran?

Claim your profile

Publications (121)739.34 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity, modulates subcellular targeting, and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca2+-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIβ. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wildtype (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII associated proteins (CaMKAPs). A total of 6 and 7 autophosphorylation sites in CaMKIIα and CaMKIIβ, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIβ were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIβ were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions, and of cytosolic CaMKIIβ at Ser315 and Thr320/Thr321. Significantly more CaMKAPs co-precipitated with WT CaMKII holoenzymes in the synaptic fraction compared to the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation of CaMKIIα, likely contributing to the diverse synaptic and behavioral deficits of T286A-KI mice.
    ACS Chemical Neuroscience 02/2015; 6(4). DOI:10.1021/cn500337u · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: On-demand postsynaptic synthesis and release of endocannabinoid lipids and subsequent binding to presynaptic CB1 receptors (CB1Rs) mediates short and long-term depression (LTD) of excitatory transmission in many brain regions. However, mechanisms involved in the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) by diacylglycerol lipase α (DGLα) are poorly understood. Since Gq-coupled receptor activation can stimulate production of a major DGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) by PLCβ, we sought to determine if 2-AG biosynthesis was limited only by a lack of substrate availability, or if other pathways, such as Ca(2+) signaling, also need to be simultaneously engaged. To address this question, we loaded medium spiny neurons of the dorsolateral striatum with SAG while monitoring excitatory synaptic inputs. SAG-loading had no significant effect on evoked excitatory synaptic currents when cells were voltage-clamped at -80 mV. However, depolarization of MSNs to -50 mV revealed a SAG-loading dependent decrease in the amplitude of excitatory currents that was accompanied by an increase in paired pulse ratio, consistent with decreased glutamate release. Both effects of loading SAG at -50 mV were blocked by chelation of postsynaptic Ca(2+) using BAPTA or by bath application of tetrahydrolipstatin (THL), a DGL inhibitor. Loading of SAG into glutamatergic pyramidal neurons of the amygdala similarly inhibited excitatory synaptic inputs and increased the PPR. SAG-induced depression was absent in both regions from mice lacking CB1Rs. These data show that increasing substrate availability alone is insufficient to drive 2-AG mobilization and that DGL-dependent synaptic depression via CB1R activation requires postsynaptic Ca(2+) signals. Copyright © 2014. Published by Elsevier Ltd.
    Neuropharmacology 12/2014; 91. DOI:10.1016/j.neuropharm.2014.11.026 · 4.82 Impact Factor
  • 53rd Annual Meeting of the American-College-of-Neuropsychopharmacology; 12/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endocannabinoid (eCB) signaling has been heavily implicated in the modulation of anxiety and depressive behaviors and emotional learning. However, the role of the most-abundant endocannabinoid 2-arachidonoylglycerol (2-AG) in the physiological regulation of affective behaviors is not well understood. Here, we show that genetic deletion of the 2-AG synthetic enzyme diacylglycerol lipase α (DAGLα) in mice reduces brain, but not circulating, 2-AG levels. DAGLα deletion also results in anxiety-like and sex-specific anhedonic phenotypes associated with impaired activity-dependent eCB retrograde signaling at amygdala glutamatergic synapses. Importantly, acute pharmacological normalization of 2-AG levels reverses both phenotypes of DAGLα-deficient mice. These data suggest 2-AG deficiency could contribute to the pathogenesis of affective disorders and that pharmacological normalization of 2-AG signaling could represent an approach for the treatment of mood and anxiety disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 11/2014; 9(5). DOI:10.1016/j.celrep.2014.11.001 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucose stimulated insulin secretion (GSIS) from pancreatic β-cells is caused by Ca(2+) entry via voltage-dependent Ca(2+) channels (VDCCs). CaMKII is a key mediator and feedback regulator of Ca(2+) signaling in many tissues, but its role in β-cells is poorly understood, especially in vivo. Here we report that mice with conditional inhibition of CaMKII in β-cells show significantly impaired glucose tolerance due to decreased GSIS. Moreover, β-cell CaMKII inhibition dramatically exacerbates glucose intolerance following exposure to a high fat diet (HFD). The impairment of islet GSIS by β-cell CaMKII inhibition is not accompanied by changes in either glucose metabolism or the activities of KATP and voltage-gated potassium channels. However, glucose-stimulated Ca(2+) entry via VDCCs is reduced in islet β-cells with CaMKII inhibition, as well as in primary wild-type β-cells treated with a peptide inhibitor of CaMKII. The levels of basal β-cell cytoplasmic Ca(2+) and of endoplasmic reticulum Ca(2+) stores are also decreased by CaMKII inhibition. In addition, CaMKII inhibition suppresses glucose-stimulated action potential firing frequency. These results reveal that CaMKII is a Ca(2+) sensor with a key role as a feed-forward stimulator of β-cell Ca(2+) signals that enhance GSIS under physiological and pathological conditions.
    Journal of Biological Chemistry 03/2014; 289(18). DOI:10.1074/jbc.M114.562587 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Learning and memory is widely believed to result from changes in connectivity within neuronal circuits due to synaptic plasticity. Work over the past two decades has shown that Ca(2+) influx during LTP induction triggers the activation of CaMKII in dendritic spines. CaMKII activation results in autophosphorylation of the kinase rendering it constitutively active long after the Ca(2+) dissipates within the spine. This "molecular switch"(1) mechanism is essential for LTP and learning and memory. Here, we discuss this key regulatory mechanism and the diversity of downstream targets that can be modulated by CaMKII to exert dynamic control of synaptic structure and function.
    Progress in molecular biology and translational science 01/2014; 122C:61-87. DOI:10.1016/B978-0-12-420170-5.00003-9 · 3.11 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability.
    Molecular cell 10/2013; DOI:10.1016/j.molcel.2013.08.043 · 14.46 Impact Factor
  • Ariel Y Deutch, Peter Hedera, Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: The hereditary spastic paraplegias (HSPs) are characterized by spasticity of the leg muscles due to axonal degeneration of corticospinal neurons. Beetz et al. report that the core motor phenotype and axonal pathology of HSPs are recapitulated in mice lacking the HSP-associated gene Reep1. REEP1 is shown to regulate ER structure in motor cortex neurons. The Reep1 knockout mouse should be a very useful model in which to study the mechanisms of progressive axon loss in HSPs and other disorders.
    The Journal of clinical investigation 09/2013; DOI:10.1172/JCI72324 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Augmentation of endogenous cannabinoid (eCB) signaling represents an emerging approach to the treatment of affective disorders. Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid to form prostaglandins, but also inactivates eCBs in vitro. However, the viability of COX-2 as a therapeutic target for in vivo eCB augmentation has not been explored. Using medicinal chemistry and in vivo analytical and behavioral pharmacological approaches, we found that COX-2 is important for the regulation of eCB levels in vivo. We used a pharmacological strategy involving substrate-selective inhibition of COX-2 to augment eCB signaling without affecting related non-eCB lipids or prostaglandin synthesis. Behaviorally, substrate-selective inhibition of COX-2 reduced anxiety-like behaviors in mice via increased eCB signaling. Our data suggest a key role for COX-2 in the regulation of eCB signaling and indicate that substrate-selective pharmacology represents a viable approach for eCB augmentation with broad therapeutic potential.
    Nature Neuroscience 08/2013; DOI:10.1038/nn.3480 · 14.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses, but the molecular regulation of 2-AG synthesis is not well understood. Here we identify a functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacted with the C-terminal domain of DGLα, phosphorylated two serine residues and inhibited DGLα activity. Consistent with an inhibitory role for CaMKII in 2-AG synthesis, in vivo genetic inhibition of CaMKII increased striatal DGL activity and basal levels of 2-AG, and CaMKII inhibition augmented short-term retrograde endocannabinoid signaling at striatal glutamatergic synapses. Lastly, blockade of 2-AG breakdown using concentrations of JZL-184 that have no effect in wild-type mice produced a hypolocomotor response in mice with reduced CaMKII activity. These findings provide mechanistic insights into the molecular regulation of striatal endocannabinoid signaling with implications for physiological control of motor function.
    Nature Neuroscience 03/2013; 16(4). DOI:10.1038/nn.3353 · 14.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The abnormal metabolism of the Xenopus laevis egg provides a cell survival signal. We previously found that increased carbon flux from glucose-6-phosphate through the pentose phosphate pathway in egg extracts maintains NADPH levels and CaMKII activity to phosphorylate caspase-2 and suppress cell-death pathways. Here we show that the addition of glucose-6-phosphate (G6P) to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase-2 by protein phosphatase 1 (PP1). Thus, G6P sustains the phosphorylation of caspase-2 by CaMKII at Ser-135, preventing the induction of caspase-2 mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways.
    Journal of Biological Chemistry 02/2013; DOI:10.1074/jbc.M112.437186 · 4.60 Impact Factor
  • Anthony J Baucum, Abigail M Brown, Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: Distinct physiological stimuli are required for bidirectional synaptic plasticity in striatum and hippocampus, but differences in the underlying signaling mechanisms are poorly understood. We have begun to compare levels and interactions of key excitatory synaptic proteins in whole extracts and subcellular fractions isolated from micro-dissected striatum and hippocampus. Levels of multiple glutamate receptor subunits, calcium/calmodulin-dependent protein kinase II (CaMKII), a highly abundant serine/threonine kinase, and spinophilin, a F-actin and protein phosphatase 1 (PP1) binding protein, were significantly lower in striatal extracts, as well as in synaptic and/or extrasynaptic fractions, compared to similar hippocampal extracts/fractions. However, CaMKII interactions with spinophilin were more robust in striatum compared to hippocampus, and this enhanced association was restricted to the extrasynaptic fraction. NMDAR GluN2B subunits associate with both spinophilin and CaMKII, but spinophilin-GluN2B complexes were enriched in extrasynaptic fractions whereas CaMKII-GluN2B complexes were enriched in synaptic fractions. Notably, the association of GluN2B with both CaMKII and spinophilin was more robust in striatal extrasynaptic fractions compared to hippocampal extrasynaptic fractions. Selective differences in the assembly of synaptic and extrasynaptic signaling complexes may contribute to differential physiological regulation of excitatory transmission in striatum and hippocampus. © 2012 International Society for Neurochemistry, J. Neurochem. (2012) 10.1111/jnc.12101.
    Journal of Neurochemistry 11/2012; DOI:10.1111/jnc.12101 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is abundant in striatal medium spiny neurons (MSNs). CaMKII is dynamically regulated by changes in dopamine signaling, as occurs in Parkinson's disease as well as addiction. Although CaMKII has been extensively studied in the hippocampus where it regulates excitatory synaptic transmission, relatively little is known about how it modulates neuronal function in the striatum. Therefore, we examined the impact of selectively overexpressing an EGFP-fused CaMKII inhibitory peptide (EAC3I) in striatal medium spiny neurons (MSNs) using a novel transgenic mouse model. EAC3I-expressing cells exhibited markedly decreased excitatory transmission, indicated by a decrease in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs). This decrease was not accompanied by changes in the probability of release, levels of glutamate at the synapse, or changes in dendritic spine density. CaMKII regulation of the AMPA receptor subunit GluA1 is a major means by which the kinase regulates neuronal function in the hippocampus. We found that the decrease in striatal excitatory transmission seen in the EAC3I mice is mimicked by deletion of GluA1. Further, while CaMKII inhibition decreased excitatory transmission onto MSNs, it increased their intrinsic excitability. These data suggest that CaMKII plays a critical role in setting the excitability rheostat of striatal MSNs by coordinating excitatory synaptic drive and the resulting depolarization response.
    PLoS ONE 09/2012; 7(9):e45323. DOI:10.1371/journal.pone.0045323 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.
    Journal of Biological Chemistry 03/2012; 287(19):15275-83. DOI:10.1074/jbc.M112.351817 · 4.60 Impact Factor
  • Source
    Anthony J Baucum, Stefan Strack, Roger J Colbran
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1)-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII) directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging.
    PLoS ONE 02/2012; 7(2):e31554. DOI:10.1371/journal.pone.0031554 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bed nucleus of the stria terminalis (BNST) is a critical region for alcohol/drug-induced negative affect and stress-induced reinstatement. NMDA receptor (NMDAR)-dependent plasticity, such as long-term potentiation (LTP), has been postulated to play key roles in alcohol and drug addiction; yet, to date, little is understood regarding the mechanisms underlying LTP of the BNST, or its regulation by ethanol. Acute and chronic exposure to ethanol modulates glutamate transmission via actions on NMDARs. Despite intense investigation, tests of subunit specificity of ethanol actions on NMDARs using pharmacological approaches have produced mixed results. Thus, we use a conditional GluN2B KO mouse line to assess both basal and ethanol-dependent function of this subunit at glutamate synapses in the BNST. Deletion of GluN2B eliminated LTP, as well as actions of ethanol on NMDAR function. Further, we show that chronic ethanol exposure enhances LTP formation in the BNST. Using KO-validated pharmacological approaches with Ro25-6981 and memantine, we provide evidence suggesting that chronic ethanol exposure enhances LTP in the BNST via paradoxical extrasynaptic NMDAR involvement. These findings demonstrate that GluN2B is a key point of regulation for ethanol's actions and suggest a unique role of extrasynaptic GluN2B-containing receptors in facilitating LTP.
    Proceedings of the National Academy of Sciences 01/2012; 109(5):E278-87. DOI:10.1073/pnas.1113820109 · 9.81 Impact Factor
  • Neurotoxicology and Teratology 07/2011; 33(4):510-511. DOI:10.1016/ · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The densin C-terminal domain can target Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) in cells. Although the C-terminal domain selectively binds CaMKIIα in vitro, full-length densin associates with CaMKIIα or CaMKIIβ in brain extracts and in transfected HEK293 cells. This interaction requires a second central CaMKII binding site, the densin-IN domain, and an "open" activated CaMKII conformation caused by Ca(2+)/calmodulin binding, autophosphorylation at Thr-286/287, or mutation of Thr-286/287 to Asp. Mutations in the densin-IN domain (L815E) or in the CaMKIIα/β catalytic domain (I205/206K) disrupt the interaction. The amino acid sequence of the densin-IN domain is similar to the CaMKII inhibitor protein, CaMKIIN, and a CaMKIIN peptide competitively blocks CaMKII binding to densin. CaMKII is inhibited by both CaMKIIN and the densin-IN domain, but the inhibition by densin is substrate-selective. Phosphorylation of a model peptide substrate, syntide-2, or of Ser-831 in AMPA receptor GluA1 subunits is fully inhibited by densin. However, CaMKII phosphorylation of Ser-1303 in NMDA receptor GluN2B subunits is not effectively inhibited by densin in vitro or in intact cells. Thus, densin can target multiple CaMKII isoforms to differentially modulate phosphorylation of physiologically relevant downstream targets.
    Journal of Biological Chemistry 05/2011; 286(28):24806-18. DOI:10.1074/jbc.M110.216010 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to provide insight into in vivo roles of CaMKIIα autophosphorylation at Thr286 during postnatal development, behavioral, biochemical, and electrophysiological phenotypes of pre-adolescent Thr286 to Ala CaMKIIα knock-in (T286A-KI) and WT mice were examined. T286A-KI mice displayed cognitive deficits in a novel object recognition test and an anxiolytic phenotype in the elevated plus maze, suggesting disruption of normal developmental processes. At the molecular level, the ratio of total CaMKIIα to CaMKIIβ in hippocampal lysates was significantly decreased≈2-fold in T286A-KI mice, and levels of both isoforms in synaptic subcellular fractions were decreased by≈80%. Total levels of GluA1 AMPA-glutamate receptor subunits and phosphorylation of GluA1 at the CaMKII site (Ser831) in synaptic fractions were unaltered, as were the frequency and amplitude of AMPAR-mediated spontaneous excitatory postsynaptic currents at hippocampal CA3-CA1 synapses. Synaptic levels of NMDA-glutamate receptor GluN1, GluN2A and GluN2B subunits also were unaltered. However, the reduced ratio of CaMKII to NMDAR subunits in synaptic fractions was linked to increased synaptic NMDAR-mediated currents in T286A-KI mice, apparently due to increased functional contributions by GluN2B NMDARs (assessed by Ro 25-6981 sensitivity). Thus, disruption of CaMKII synaptic targeting caused by elimination of Thr286 autophosphorylation leads to synaptic and behavioral deficits during pre-adolescence.
    Molecular and Cellular Neuroscience 05/2011; 47(4):286-92. DOI:10.1016/j.mcn.2011.05.006 · 3.73 Impact Factor

Publication Stats

6k Citations
739.34 Total Impact Points


  • 1989–2014
    • Vanderbilt University
      • • Department of Molecular Physiology and Biophysics
      • • Department of Internal Medicine
      Нашвилл, Michigan, United States
  • 2006
    • Huazhong University of Science and Technology
      Wu-han-shih, Hubei, China
    • The Rockefeller University
      • Laboratory of Molecular and Cellular Neuroscience
      New York City, New York, United States
  • 2004
    • Indiana University-Purdue University Indianapolis
      • Department of Biochemistry and Molecular Biology
      Indianapolis, Indiana, United States
  • 1988–1990
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1986
    • Newcastle University
      Newcastle-on-Tyne, England, United Kingdom