P E Orndorff

North Carolina State University, Raleigh, North Carolina, United States

Are you P E Orndorff?

Claim your profile

Publications (68)233.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Adherence of pathogens to cellular targets is required to initiate most infections. Defining strategies that interfere with adhesion is important for the development of preventative measures against infectious diseases. As an adhesin to host extracellular matrix proteins and human keratinocytes, the trimeric autotransporter adhesin DsrA, a proven virulence factor of the Gram-negative bacterium Haemophilus ducreyi, is a potential target for vaccine development. A recombinant form of the N-terminal passenger domain of DsrA from H. ducreyi class I strain 35000HP, termed rNT-DsrAI, was tested as a vaccine immunogen in the experimental swine model of H. ducreyi infection. Viable homologous H. ducreyi was not recovered from any animal receiving four doses of rNT-DsrAI administered with Freund's adjuvant at two-week intervals. Control pigs receiving adjuvant only were all infected. All animals receiving the rNT-DsrAI vaccine developed antibody endpoint titers between 3.5 and 5 logs. All rNT-DsrAI antisera bound the surface of the two H. ducreyi strains used to challenge immunized pigs. Purified anti-rNT-DsrAI IgG partially blocked binding of fibrinogen at the surface of intact H. ducreyi. Overall, immunization with the passenger domain of the trimeric autotransporter adhesin DsrA therefore accelerated clearance of H. ducreyi in experimental lesions, possibly by interfering with fibrinogen binding.
    Vaccine. 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gravid mice and other rodents inoculated with Listeria monocytogenes typically fail to clear an intrauterine infection and either succumb or expel their intrauterine contents. We took advantage of this property to investigate the effects of an extrauterine infection on parameters of pregnancy success. Pregnant mice were selected for our study if they showed no clinical signs of listeriosis following oral inoculation at 7.5 gestational days (gd), and had no detectable intrauterine colony forming units (cfu) at near term (18.5 gd). The range of oral doses employed was 10(6)-10(8) cfu per mouse for two listerial serotype strains (4nonb and 1/2a). At all doses, inoculation resulted in a decrease in average near-term (18.5 gd) fetal weight per litter compared to sham inoculated controls. Additionally, embryonic death (indicated by intrauterine resorptions) was exhibited by some inoculated mice but was absent in all sham inoculated animals. In parallel experiments designed to detect possible loss of placental function, gravid uteruses were examined histopathologically and microbiologically 96 h after oral inoculation. Placental lesions were associated with high (> 10(6)), but not low (< 10(2)) or absent intrauterine cfu. In vitro, mouse embryonic trophoblasts were indistinguishable from mouse enterocytes in terms of their sensitivity to listerial exposure. A model consistent with our observations is one in which products (host or bacterial) generated during an acute infection enter embryos transplacentally and influences embryonic survival and slows normal growth in utero.
    PLoS ONE 01/2013; 8(8):e72601. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The costs associated with the treatment of medical device and surgical site infections are a major cause of concern in the global healthcare system. To prevent transmission of such infections, a prophylactic surface system that provides protracted release of antibacterial silver ions using low intensity direct electric current (LIDC; 28 μA system current at 6 V) activation has been recently developed. To ensure the safety for future in vivo studies and potential clinical applications, this study assessed the biocompatibility of the LIDC-activated interdigitated silver electrodes-based surface system; in vitro toxicity to human epidermal keratinocytes, human dermal fibroblasts, and normal human osteoblasts, and antibacterial efficacy against Staphylococcus aureus and Escherichia coli was evaluated. The study concluded that the technological applications of the surface system for medical devices and surgical tools, which contact human tissues for less than 1.5 h, are expected to be self-sterilizing without causing toxicity in vivo.
    Journal of Materials Science Materials in Medicine 12/2012; · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A Listeria monocytogenes glcV mutation precludes the binding of certain listerial phages and produces a profound attenuation characterized by the absence of detectable mutants in the livers and spleens of orally inoculated mice. In vitro, we found that the mutant formed plaques on mouse enterocyte monolayers as efficiently as the parent but the plaques formed were smaller. Intracellular growth rate determinations and examination of infected enterocytes by light and fluorescence microscopy established that the mutant was impaired not in intracellular growth rate but in cell-to-cell spreading. Because this property is shared by other immunogenic mutants (e.g., actA mutants), our glcV mutant was tested for vaccine efficacy. Oral immunization with the mutant and subsequent oral challenge (22 days postvaccination) with the parent revealed a ca. 10,000-fold increase in protection afforded by the mutant compared to sham-vaccinated controls. The glcV mutant did not stimulate innate immunity under the dose and route employed for vaccination, and an infectivity index time course experiment revealed pronounced mutant persistence in Peyer's patches. The immunogenicity of the glcV mutant compared to an isogenic actA mutant reference strain was next tested in an experiment with a challenge given 52 days postvaccination. Both mutant strains showed scant vital organ infectivity and high levels of protection similar to those seen using the glcV mutant in the 22-day postvaccination challenge. Our results indicate that oral administration of a profoundly attenuated listerial mutant can safely elicit solid protective immunity.
    Infection and immunity 09/2011; 79(12):5001-9. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haemophilus ducreyi, the etiologic agent of chancroid, has an obligate requirement for heme. Heme is acquired by H. ducreyi from its human host via TonB-dependent transporters expressed at its bacterial surface. Of 3 TonB-dependent transporters encoded in the genome of H. ducreyi, only the hemoglobin receptor, HgbA, is required to establish infection during the early stages of the experimental human model of chancroid. Active immunization with a native preparation of HgbA (nHgbA) confers complete protection in the experimental swine model of chancroid, using either Freund's or monophosphoryl lipid A as adjuvants. To determine if transfer of anti-nHgbA serum is sufficient to confer protection, a passive immunization experiment using pooled nHgbA antiserum was conducted in the experimental swine model of chancroid. Pigs receiving this pooled nHgbA antiserum were protected from a homologous, but not a heterologous, challenge. Passively transferred polyclonal antibodies elicited to nHgbA bound the surface of H. ducreyi and partially blocked hemoglobin binding by nHgbA, but were not bactericidal. Taken together, these data suggest that the humoral immune response to the HgbA vaccine is protective against an H. ducreyi infection, possibly by preventing acquisition of the essential nutrient heme.
    Infection and immunity 06/2011; 79(8):3168-77. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular matrices utilized by biofilms growing on inert surfaces are generally produced entirely by the bacteria growing within those biofilms, whereas symbiotic (mutualistic) biofilms growing in or on a wide range of plants and animals utilize host-derived macromolecules, such as mucoid substances, as components of their extracellular matrix. Incorporation of host-derived molecules may have a profound effect on the resistance to antibiotics of symbiotic biofilms, which may have important implications for medicine and biology. As an initial probe of the potential effects of host-derived molecules in the extracellular matrix on the sensitivity of biofilms to antibiotics, an in vitro model was used to evaluate the effects of ciprofloxacin on biofilms grown in the presence and absence of SIgA, a host-derived glycoprotein associated with biofilms in the mammalian gut. In five out of six strains of Escherichia coli tested, the incorporation of SIgA into the biofilms apparently reduced the resistance of the bacteria to ciprofloxacin. On the other hand, SIgA generally increased the resistance of planktonic bacteria to ciprofloxacin, perhaps due in part to the SIgA-mediated aggregation of the bacteria. These findings suggest that incorporation of host-derived molecules into the extracellular matrix of symbiotic biofilms might profoundly alter the properties of those biofilms, including the resistance of those biofilms to antibiotics.
    Microbiology and Immunology 12/2010; 55(3):174-83. · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silver nanoparticles (Ag-nps) are used as a natural biocide to prevent undesired bacterial growth in clothing and cosmetics. The objective of this study was to assess the antibacterial efficacy of Ag-nps of different sizes, surface conditions, and synthesis methods against Escherichia coli, Ag-resistant E. coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Salmonella sp. Ag-nps samples were synthesized by: Base reduction with unmodified surfaces and used as synthesized ('unwashed'; 20, 50 and 80 nm) or after 20 phosphate buffer washes ('washed'; 20, 50 and 80 nm), or synthesized by laser ablation with carbon-stabilized surfaces ('carbon-coated'; 25 and 35 nm). Unwashed Ag-nps were toxic to all bacterial strains at concentrations between 3.0-8.0 μg/ml. The washed Ag-nps and carbon-coated Ag-nps were toxic to all bacterial strains except Ag-resistant E. coli at concentrations between 64.0-1024.0 μg/ml. Ag-resistant E. coli died only when treated with unwashed Ag-nps or its supernatant, both of which contained formaldehyde.
    Nanotoxicology 11/2010; 5(2):244-53. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haemophilus ducreyi, the etiological agent of chancroid, has a strict requirement for heme, which it acquires from its only natural host, humans. Previously, we showed that a vaccine preparation containing the native hemoglobin receptor HgbA purified from H. ducreyi class I strain 35000HP (nHgbAI) and administered with Freund's adjuvant provided complete protection against a homologous challenge. In the current study, we investigated whether nHgbAI dispensed with monophosphoryl lipid A (MPL), an adjuvant approved for use in humans, offered protection against a challenge with H. ducreyi strain 35000HP expressing either class I or class II HgbA (35000HPhgbAI and 35000HPhgbAII, respectively). Pigs immunized with the nHgbAI/MPL vaccine were protected against a challenge from homologous H. ducreyi strain 35000HPhgbAI but not heterologous strain 35000HPhgbAII, as evidenced by the isolation of only strain 35000HPhgbAII from nHgbAI-immunized pigs. Furthermore, histological analysis of the lesions showed striking differences between mock-immunized and nHgbAI-immunized animals challenged with strains 35000HPhgbAI but not those challenged with strain 35000HPhgbAII. Mock-immunized pigs were not protected from a challenge by either strain. The enzyme-linked immunosorbent assay (ELISA) activity of the nHgbAI/MPL antiserum was lower than the activity of antiserum from animals immunized with the nHgbAI/Freund's vaccine; however, anti-nHgbAI from both studies bound whole cells of 35000HPhgbAI better than 35000HPhgbAII and partially blocked hemoglobin binding to nHgbAI. In conclusion, despite eliciting lower antibody ELISA activity than the nHgbAI/Freund's, the nHgbAI/MPL vaccine provided protection against a challenge with homologous but not heterologous H. ducreyi, suggesting that a bivalent HgbA vaccine may be needed.
    Infection and immunity 09/2010; 78(9):3763-72. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although mice associated with a single bacterial species have been used to provide a simple model for analysis of host-bacteria relationships, bacteria have been shown to display adaptability when grown in a variety of novel environments. In this study, changes associated with the host-bacterium relationship in mice monoassociated with Escherichia coli K-12 over a period of 1,031 days were evaluated. After 80 days, phenotypic diversification of E. coli was observed, with the colonizing bacteria having a broader distribution of growth rates in the laboratory than the parent E. coli. After 1,031 days, which included three generations of mice and an estimated 20,000 generations of E. coli, the initially homogeneous bacteria colonizing the mice had evolved to have widely different growth rates on agar, a potential decrease in tendency for spontaneous lysis in vivo, and an increased tendency for spontaneous lysis in vitro. Importantly, mice at the end of the experiment were colonized at an average density of bacteria that was more than 3-fold greater than mice colonized on day 80. Evaluation of selected isolates on day 1,031 revealed unique restriction endonuclease patterns and differences between isolates in expression of more than 10% of the proteins identified by two-dimensional electrophoresis, suggesting complex changes underlying the evolution of diversity during the experiment. These results suggest that monoassociated mice might be used as a tool for characterizing niches occupied by the intestinal flora and potentially as a method of targeting the evolution of bacteria for applications in biotechnology.
    Applied and Environmental Microbiology 07/2010; 76(14):4655-63. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bordetella avium causes bordetellosis in birds, a disease similar to whooping cough caused by Bordetella pertussis in children. B. avium agglutinates guinea pig erythrocytes via an unknown mechanism. Loss of hemagglutination ability results in attenuation. We report the use of transposon mutagenesis to identify two genes required for hemagglutination. The genes (hagA and hagB) were adjacent and divergently oriented and had no orthologs in the genomes of other Bordetella species. Construction of in-frame, unmarked mutations in each gene allowed examination of the role of each in conferring erythrocyte agglutination, explanted tracheal cell adherence, and turkey poult tracheal colonization. In all of the in vitro and in vivo assays, the requirement for the trans-acting products of hagA and hagB (HagA and HagB) was readily shown. Western blotting, using antibodies to purified HagA and HagB, revealed proteins of the predicted sizes of HagA and HagB in an outer membrane-enriched fraction. Antiserum to HagB, but not HagA, blocked B. avium erythrocyte agglutination and explanted turkey tracheal ring binding. Bioinformatic analysis indicated the similarity of HagA and HagB to several two-component secretory apparatuses in which one product facilitates the exposition of the other. HagB has the potential to serve as a useful immunogen to protect turkeys against colonization and subsequent disease.
    Infection and immunity 03/2010; 78(6):2370-6. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gravid mammals are more prone to listeriosis than their nongravid counterparts. However, many features of the disease in gravid animals are not well defined. We determined, in mice, that increased susceptibility to lethal infection following oral inoculation begins surprisingly early in pregnancy and extends through embryonic development. Pregnancy did not demonstrably increase the spread of listeriae from the intestine to the liver and spleen in the initial 96 h period post inoculation. Consequently, it appeared that gravid animals were competent to contain an enteric infection, but in those instances where escape did occur, a lethal outcome was more likely. Interestingly, colonic colonization level and prevalence, measured 96 h post inoculation, was significantly higher in gravid individuals. In terms of human risk factors for listeriosis, our results suggest that the window of listeriosis susceptibility afforded by pregnancy may be open longer than previously appreciated. Our results also suggest that while gravid animals are competent to contain an enteric infection, enteric carriage rate may be more of a factor in defining disease incidence than previously considered.
    PLoS ONE 01/2010; 5(9):e13000. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of cell-surface processes involving glycans is their multivalent interaction with glycan binding proteins (GBPs). Such a multivalent interaction depends critically on the mobility and density of signaling molecules on the membrane surface. While glycan microarrays have been used in exploring multivalent interactions, the lack of mobility and the difficulty in controlling surface density both limit their quantitative applications. Here we apply a fluidic glycan microarray, with glycan density varying for orders of magnitude, to profile cell surface interaction using a model system, the adhesion of Escherichia coli to mannose. We show the quantitative determination of monovalent and multivalent adhesion channels; the latter can be inhibited by nanopartices presenting a high density of mannosyl groups. These results reveal a new E. coli adhesion mechanism: the switching in the FimH adhesion protein avidity from monovalent to multivalent as the density of mobile mannosyl groups increases; such avidity switching enhances binding affinity and triggers multiple fimbriae anchoring. Affinity enhancement toward FimH has only been observed before for oligo-mannose due to the turn on of secondary interactions outside the mannose binding pocket. We suggest that the new mechanism revealed by the fluidic microarray is of general significance to cell surface interactions: the dynamic clustering of simple sugar groups (homogeneous or heterogeneous) on the fluidic membrane surface may simulate the functions of complex glycan molecules.
    Journal of the American Chemical Society 10/2009; 131(38):13646-50. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the primary factors limiting the efficacy of probiotic therapies is short persistence time. Utilizing a novel method for assessment of persistence in the large bowel independent of survival of the organisms in the upper GI tract, we tested whether overexpression of the type 1 pilus, a colonization factor, or the presence of secretory immunoglobulin A (sIgA) might increase the persistence time of a laboratory strain of E. coli in the gut. For this purpose, cecal ostomies were created in mice and bacteria were placed in the ostomies, with or without sIgA. The persistence of the bacteria was assessed by evaluating the length of time after placement in which the bacteria were found in fecal samples. E. coli MG1655 expressing pili with the mannose-specific adhesin persisted in vivo significantly longer [mean (hours) +/- SEM: 91.50 +/- 15.98, n = 12] than bacteria expressing pili without adhesin [43.67 +/- 8.22, n = 12] (P = 0.01) and significantly longer than bacteria expressing neither pili nor adhesin [22.00 +/- 4.22, n = 12] (P = 0.0004). Although the persistence time of bacteria was not significantly affected by the presence of sIgA, the sIgA did cause a relative increase in retention of inert particles. These results, combined with an acute increase in stool production and stool water content in those animals not receiving sIgA following introduction of bacteria, suggest that sIgA might have anti-inflammatory properties in the gut when administered with enteric bacteria. Modifying expression of probiotic colonization factors may provide substantial benefit to patients with digestive tract diseases by virtue of increased persistence of the probiotic and, in the case of sIgA, an anti-inflammatory effect. This novel in vivo model may be useful in evaluating persistence time in a variety of current and future probiotic regimens.
    Experimental Biology and Medicine 08/2009; 234(10):1174-85. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A Listeria monocytogenes bacteriophage was used to identify a phage-resistant Tn917 insertion mutant of the mouse-virulent listerial strain F6214-1. The mutant was attenuated when it was inoculated orally into female A/J mice and failed to replicate efficiently in cultured mouse enterocytes. Phage binding studies indicated that the mutant had a cell surface alteration that precluded phage attachment. All phenotypes associated with the mutation could be complemented in trans by a single open reading frame (ORF) that corresponded to the ORF interrupted by the Tn917 insertion. The complementation effected was, in all cases, at a level indistinguishable from that of the parent. The Tn917 insertion interrupted a gene that is predicted to encode a group 2 glycosyl transferase (provisionally designated glcV). A similar glcV gene is present in Listeria welshimeri and Listeria innocua and in some serotypes of L. monocytogenes. We speculate that the loss of the glcV product results in a defective phage receptor and that this alteration coincidentally influences a feature of the normal host-pathogen interaction required for virulence. Interestingly, the glcV lesion, while preventing phage attachment, did not alter the mutant's ability to bind to cultured mouse enterocyte monolayers. Rather, the mutation appeared to alter a subsequent step in intracellular replication measured by a reduction in plaque-forming efficiency and plaque size. In vivo, the mutant was undetectable in the liver and spleen 48 h after oral inoculation. The mutation is significant in part because it is one of the few that produce attenuation when the mutant is delivered orally.
    Infection and immunity 07/2008; 76(9):4046-54. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.
    Journal of Bacteriology 09/2006; 188(16):6002-15. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haemophilus ducreyi, the etiologic agent of the sexually transmitted genital ulcer disease chancroid, has been shown to associate with dermal collagen fibers within infected skin lesions. Here we describe NcaA, a previously uncharacterized outer membrane protein that is important for H. ducreyi collagen binding and host colonization. An H. ducreyi strain lacking the ncaA gene was impaired in adherence to type I collagen but not fibronectin (plasma or cellular form) or heparin. The mutation had no effect on serum resistance or binding to HaCaT keratinocytes or human foreskin fibroblasts in vitro. Escherichia coli expressing H. ducreyi NcaA bound to type I collagen, demonstrating that NcaA is sufficient to confer collagen attachment. The importance of NcaA in H. ducreyi pathogenesis was assessed using both swine and human experimental models of chancroid. In the swine model, 20% of lesions from sites inoculated with the ncaA mutant were culture positive for H. ducreyi 7 days after inoculation, compared to 73% of wild-type-inoculated sites. The average number of CFU recovered from mutant-inoculated lesions was also significantly reduced compared to that recovered from wild-type-inoculated sites at both 2 and 7 days after inoculation. In the human challenge model, 8 of 30 sites inoculated with wild-type H. ducreyi progressed to the pustular stage, compared to 0 of 30 sites inoculated with the ncaA mutant. Together these results demonstrate that the collagen binding protein NcaA is required for H. ducreyi infection.
    Infection and Immunity 06/2006; 74(5):2651-8. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the Genus Listeria are ubiquitous environmental saprophytic microorganisms. If ingested they can cause a severe disseminated disease (listeriosis) that has a high mortality rate, the highest of any food-borne pathogen, even with antibiotic therapy. Central to the high mortality rate is the hallmark characteristic of the microorganism to grow intracellularly. The presence of listeriae in food processing plants has resulted in many outbreaks of human disease and large scale recalls of processed foods. Despite the ubiquity of the microorganism, the actual disease rate (those animals showing disease signs over those exposed) is quite low and disease is almost always associated with an underlying predisposition (pregnancy being the most common in otherwise normal individuals). There are many features of the pathogenesis of listeriosis that have remained mysterious despite the extensive use of the microorganism in the study of cell-mediated immunity and intracellular growth. Informational advances such as the sequence of the mouse and listerial genomes, and technical advances such as the discovery of listeria-susceptible mouse strains, may renew interest in the study of the natural pathogenesis of the disease. This may be further facilitated by studies that employ the natural inoculation route and mimic common predisposing conditions witnessed in victims of natural outbreaks.
    Veterinary Microbiology 05/2006; 114(1-2):1-15. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The etiologic agent of chancroid is Haemophilus ducreyi. To fulfill its obligate requirement for heme, H. ducreyi uses two TonB-dependent receptors: the hemoglobin receptor (HgbA) and a receptor for free heme (TdhA). Expression of HgbA is necessary for H. ducreyi to survive and initiate disease in a human model of chancroid. In this study, we used a swine model of H. ducreyi infection to demonstrate that an experimental HgbA vaccine efficiently prevents chancroid, as determined by several parameters. Histological sections of immunized animals lacked typical microscopic features of chancroid. All inoculated sites from mock-immunized pigs yielded viable H. ducreyi cells, whereas no viable H. ducreyi cells were recovered from inoculated sites of HgbA-immunized pigs. Antibodies from sera of HgbA-immunized animals bound to and initiated antibody-dependent bactericidal activity against homologous H. ducreyi strain 35000HP and heterologous strain CIP542 ATCC; however, an isogenic hgbA mutant of 35000HP was not killed, proving specificity. Anti-HgbA immunoglobulin G blocked hemoglobin binding to the HgbA receptor, suggesting a novel mechanism of protection through the limitation of heme/iron acquisition by H. ducreyi. Such a vaccine strategy might be applied to other bacterial pathogens with strict heme/iron requirements. Taken together, these data suggest continuing the development of an HgbA subunit vaccine to prevent chancroid.
    Infection and Immunity 05/2006; 74(4):2224-32. · 4.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies suggest the importance of secretory IgA (SIgA) and mucin in the mediation of biofilm formation by commensal bacteria within the mammalian gut. Studies using a variety of strains of Escherichia coli have indicated that the interaction between E. coli and SIgA is dependent on the type 1 pilus. In this study, the importance of the pilus in SIgA-mediated biofilm formation by a laboratory strain (MG1655) and environmental (fecal) strains of E. coli was evaluated. Transient expression of the type 1 pilus by the laboratory strain of E. coli failed to facilitate SIgA-mediated biofilm formation, whereas constitutive expression of the type 1 pilus by the laboratory strain was sufficient. In contrast, transient expression of the type 1 pilus was sufficient to facilitate SIgA-mediated biofilm formation by environmental isolates. The "threshold" for mucin-mediated biofilm formation appeared to be lower than that for SIgA-mediated biofilm formation, perhaps reflecting disparate roles of mucin and SIgA in mediating biofilm formation in the gut. These studies also provide the first procedures for the growth of bacterial biofilms on live epithelial cells in vitro, an important development that may facilitate future studies on the effects of bacterial biofilms on epithelial cells.
    Molecular Immunology 03/2006; 43(4):378-87. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The binding of human secretory immunoglobulin A (SIgA), the primary immunoglobulin in the gut, to Escherichia coli is thought to be dependent on type 1 pili. Type 1 pili are filamentous bacterial surface attachment organelles comprised principally of a single protein, the product of the fimA gene. A minor component of the pilus fiber (the product of the fimH gene, termed the adhesin) mediates attachment to a variety of host cell molecules in a mannose inhibitable interaction that has been extensively described. We found that the aggregation of E. coli K-12 by human secretory IgA (SIgA) was dependent on the presence of the pilus fiber, even in the absence of the mannose specific adhesin or in the presence of 25 mM alpha-CH(3)Man. The presence of pilus without adhesin also facilitated SIgA-mediated biofilm formation on polystyrene, although biofilm formation was stronger in the presence of the adhesin. IgM also mediated aggregation and biofilm formation in a manner dependent on pili with or without adhesin. These findings indicate that the pilus fiber, even in the absence of the adhesin, may play a role in biologically important processes. Under conditions in which E. coli was agglutinated by SIgA, the binding of SIgA to E. coli was not increased by the presence of the pili, with or without adhesin. This observation suggests that the pili, with or without adhesin, affect factors such as cell surface rigidity or electrostatic repulsion, which can affect agglutination but which do not necessarily determine the level of bound immunoglobulin.
    Infection and Immunity 05/2004; 72(4):1929-38. · 4.07 Impact Factor

Publication Stats

2k Citations
233.35 Total Impact Points


  • 1985–2014
    • North Carolina State University
      • • College of Veterinary Medicine
      • • Department of Population Health and Pathobiology
      • • Department of Entomology
      • • Department of Microbiology
      Raleigh, North Carolina, United States
  • 2008–2011
    • Campbell University
      • Department of Pharmaceutical Science
      North Carolina, United States
  • 1995–2011
    • University of North Carolina at Chapel Hill
      • • Department of Medicine
      • • Division of Infectious Diseases
      • • Department of Microbiology and Immunology
      Chapel Hill, NC, United States
  • 2010
    • James Madison University
      Harrisonburg, Virginia, United States
  • 2006–2010
    • Duke University Medical Center
      • Department of Surgery
      Durham, NC, United States
  • 1998–2000
    • Drew University
      • Department of Biology
      Madison, New Jersey, United States
    • Uniformed Services University of the Health Sciences
      • F. Edward Hebert School of Medicine
      Maryland, United States
  • 1984–1992
    • Stanford University
      • Department of Microbiology and Immunology
      Stanford, CA, United States
  • 1983
    • University of Minnesota Duluth
      Duluth, Minnesota, United States