Hitoshi Kurumizaka

Waseda University, Edo, Tōkyō, Japan

Are you Hitoshi Kurumizaka?

Claim your profile

Publications (143)839.33 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fanconi anemia (FA) is a rare genetic disorder characterized by genome instability, increased cancer susceptibility, progressive bone marrow failure (BMF), and various developmental abnormalities resulting from the defective FA pathway. FA is caused by mutations in genes that mediate repair processes of interstrand crosslinks and/or DNA adducts generated by endogenous aldehydes. The UBE2T E2 ubiquitin conjugating enzyme acts in FANCD2/FANCI monoubiquitination, a critical event in the pathway. Here we identified two unrelated FA-affected individuals, each harboring biallelic mutations in UBE2T. They both produced a defective UBE2T protein with the same missense alteration (p.Gln2Glu) that abolished FANCD2 monoubiquitination and interaction with FANCL. We suggest this FA complementation group be named FA-T. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 06/2015; 96(6). DOI:10.1016/j.ajhg.2015.04.022 · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Homologous recombinational repair (HR) is one of the major repair systems for DNA double-strand breaks. RAD51 is a key molecule in HR, and the RAD51 concentration in the cell nucleus increases after DNA damage induction. However, the mechanism that regulates the intracellular distribution of RAD51 is still unclear. Here, we show that hCAS/CSE1L associates with RAD51 in human cells. We found that hCAS/CSE1L negatively regulates the nuclear protein level of RAD51 under normal conditions. hCAS/CSE1L is also required to repress the DNA damage-induced focus formation of RAD51. Moreover, we show that hCAS/CSE1L plays roles in the regulation of the HR activity and in chromosome stability. These findings suggest that hCAS/CSE1L is responsible for controlling the HR activity by directly interacting with RAD51. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
    Genes to Cells 06/2015; DOI:10.1111/gtc.12262 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efficient pre-replication complex (pre-RC) formation on chromatin templates is crucial for the maintenance of genome integrity. However, the regulation of chromatin dynamics during this process has remained elusive. We found that a conserved protein, GRWD1 (glutamate-rich WD40 repeat containing 1), binds to two representative replication origins specifically during G1 phase in a CDC6- and Cdt1-dependent manner, and that depletion of GRWD1 reduces loading of MCM but not CDC6 and Cdt1. Furthermore, chromatin immunoprecipitation coupled with high-throughput sequencing (Seq) revealed significant genome-wide co-localization of GRWD1 with CDC6. We found that GRWD1 has histone-binding activity. To investigate the effect of GRWD1 on chromatin architecture, we used formaldehyde-assisted isolation of regulatory elements (FAIRE)-seq or FAIRE-quantitative PCR analyses, and the results suggest that GRWD1 regulates chromatin openness at specific chromatin locations. Taken together, these findings suggest that GRWD1 may be a novel histone-binding protein that regulates chromatin dynamics and MCM loading at replication origins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 05/2015; DOI:10.1093/nar/gkv509 · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 04/2015; 43(10). DOI:10.1093/nar/gkv405 · 9.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fanconi anemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. Fanconi anemia-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In the present study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5' flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5' flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5' flapped DNA covered by RPA. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
    Journal of Biochemistry 04/2015; DOI:10.1093/jb/mvv043 · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of nucleosomes containing either canonical H3 or its centromere-specific variant CENP-A were investigated using molecular dynamics simulations. The simulations showed that the histone cores were structurally stable during simulation periods of 100 ns and 50 ns, while DNA was highly flexible at the entry and exit regions and partially dissociated from the histone core. In particular, approximately 20-25 bp of DNA at the entry and exit regions of the CENP-A nucleosome exhibited larger fluctuations than DNA at the entry and exit regions of the H3 nucleosome. Our detailed analysis clarified that this difference in dynamics was attributable to a difference in two basic amino acids in the αN helix; two arginine (Arg) residues in H3 were substituted by lysine (Lys) residues at the corresponding sites in CENP-A. The difference in the ability to form hydrogen bonds with DNA of these two residues regulated the flexibility of nucleosomal DNA at the entry and exit regions. Our exonuclease III assay consistently revealed that replacement of these two Arg residues in the H3 nucleosome by Lys enhanced endonuclease susceptibility, suggesting that the DNA ends of the CENP-A nucleosome are more flexible than those of the H3 nucleosome. This difference in the dynamics between the two types of nucleosomes may be important for forming higher order structures in different phases.
    PLoS ONE 03/2015; 10(3):e0120635. DOI:10.1371/journal.pone.0120635 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that various modifications of histone tails play important roles in the regulation of transcription initiation. In this study, some lysine (Lys) and arginine (Arg) residues were acetylated and deiminated, respectively, in the histone H2A/H2B dimer, and charge-neutralization effects on the dimer structure were studied by native mass spectrometry. Given that both acetylation and deimination neutralize the positive charges of basic amino acid residues, it had been expected that these modifications would correspondingly affect the gas-phase behavior of the histone H2A/H2B dimer. Contrary to this expectation, it was found that Arg deimination led to greater difficulty of dissociation of the dimer by gas-phase collision, whereas acetylation of Lys residues did not cause such a drastic change in the dimer stability. In contrast, ion mobility-mass spectrometry experiments showed that arrival times in the mobility cell both of acetylated and of deiminated dimer ions changed little from those of the unmodified dimer ions, indicating that the sizes of the dimer ions did not change by modification. Charge neutralization of Arg, basicity of which is higher than Lys, might have triggered some alteration of the dimer structure that cannot be found in IM-MS but can be detected by collision in the gas phase. This article is protected by copyright. All rights reserved. © 2015 The Protein Society.
    Protein Science 03/2015; DOI:10.1002/pro.2673 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear autoantigenic sperm proteins (NASPs) are members of the acidic histone chaperones, which promote nucleosome assembly. In humans, two splicing variants proposed for the somatic and testicular isoforms, sNASP and tNASP, respectively, have been found, and the shorter form, sNASP, reportedly promotes nucleosome assembly with the histone H3 isoforms, H3.1, H3.2, and H3.3. However, the biochemical properties of the longer form, tNASP, have not been reported. tNASP is considered to exist specifically in the testis. Our present results revealed that the tNASP protein is ubiquitously produced in various human tissues, in addition to testis. Unexpectedly, we found that the nucleosome assembly activity of purified tNASP was extremely low with the canonical histone H3.1 or H3.2, but was substantially detected with the replacement histone H3.3 variant. A mutational analysis revealed that the H3.3 Ile89 residue, corresponding to the H3.1 Val89 residue, is responsible for the tNASP-mediated nucleosome assembly with H3.3. A histone deposition assay showed that the H3.3-H4 complex is more efficiently deposited onto DNA by tNASP than the H3.1-H4 complex. These results provide evidence that tNASP is ubiquitously produced in various types of human tissues, and promotes in vitro nucleosome assembly with H3 variant specificity.
    Biochemistry 01/2015; 54(5). DOI:10.1021/bi501307g · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The histone H2A/H2B dimer is a component of nucleosome core particles (NCPs). The structure of the dimer at the atomic level has not yet been revealed. A possible reason for this is that the dimer has three intrinsically disordered tail regions: the N- and C-termini of H2A and the N-terminus of H2B. To investigate the role of the tail regions of the H2A/H2B dimer structure, we characterized behaviors of the H2A/H2B mutant dimers, in which these functionally important disordered regions were depleted, using mass spectrometry (MS). After verifying that the acetylation of Lys residues in the tail regions had little effect on the gas-phase conformations of the wild-type dimer, we prepared two histone H2A/H2B dimer mutants: an H2A/H2B dimer depleted of both N-termini (dN-H2A/dN-H2B) and a dimer with the N- and C-termini of H2A and the N-terminus of H2B depleted (dNC-H2A/dN-H2B). We analyzed these mutants using IM-MS and hydrogen/deuterium exchange mass spectrometry (HDX-MS). With IM-MS, reduced structural diversity was observed for each of the tail-truncated H2A/H2B mutants. In addition, global HDX-MS proved that the dimer mutant dNC-H2A/dN-H2B was susceptible to deuteration, suggesting that its structure in solution was somewhat loosened. A partial relaxation of the mutant's structure was demonstrated also by IM-MS. In this study, we characterized the relationship between the tail lengths and the conformations of the H2A/H2B dimer in solution and gas phases, and demonstrated using mass spectrometry that disordered tail regions play an important role in stabilizing the conformation of the core region of the dimer in both phases.
    Analytical Chemistry 01/2015; 87(4). DOI:10.1021/ac503689w · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Telomeres are DNA-protein complexes located at the ends of linear eukaryotic chromosomes, and are essential for chromosome stability and maintenance. In most organisms, telomeres consist of tandemly repeated sequences of guanine-clusters. In higher eukaryotes, most of the telomeric repeat regions are tightly packaged into nucleosomes, even though telomeric repeats act as nucleosome-disfavoring sequences. Although telomeres were considered to be condensed heterochromatin structures, recent studies revealed that the chromatin structures in telomeres are actually dynamic. The dynamic properties of telomeric chromatin are considered to be important for the structural changes between the euchromatic and heterochromatic states during the cell cycle and in cellular differentiation. We propose that the nucleosome-disfavoring property of telomeric repeats is a crucial determinant for the lability of telomeric nucleosomes, and provides a platform for chromatin dynamics in telomeres. Furthermore, we discuss the influences of telomeric components on the nucleosome organization and chromatin dynamics in telomeres.
    Biomolecular concepts 01/2015; DOI:10.1515/bmc-2014-0035
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FANCD2 is a product of one of the genes associated with Fanconi anemia (FA), a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex) and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL) repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2) mutant harboring the Leu234 to Arg (L234R) substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2-/- DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation.
    PLoS ONE 12/2014; 9(12):e114752. DOI:10.1371/journal.pone.0114752 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The centromere-specific histone H3 variant, CENP-A, is overexpressed in particular aggressive cancer cells, where it can be mislocalized ectopically in the form of heterotypic nucleosomes containing H3.3. In the present study, we report the crystal structure of the heterotypic CENP-A/H3.3 particle and reveal its "hybrid structure", in which the physical characteristics of CENP-A and H3.3 are conserved independently within the same particle. The CENP-A/H3.3 nucleosome forms an unexpectedly stable structure as compared to the CENP-A nucleosome, and allows the binding of the essential centromeric protein, CENP-C, which is ectopically mislocalized in the chromosomes of CENP-A overexpressing cells.
    Scientific Reports 11/2014; 4:7115. DOI:10.1038/srep07115 · 5.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The DNA interstrand crosslink (ICL) is an extremely deleterious DNA lesion that covalently crosslinks complementary strands and prevents the strand-separation reaction. In higher eukaryotes, the Fanconi anemia proteins, FANCI and FANCD2, form a heterodimer and play essential roles in ICL repair. Human FANCI and FANCD2 are large proteins with molecular masses of 149 kDa and 164 kDa, respectively, and were reportedly purified using a baculovirus expression system with insect cells. We have established a novel expression and purification procedure for human FANCD2 and FANCI, using Escherichia coli cells. The human FANCD2 and FANCI proteins purified by this bacterial expression method formed a stable heterodimer, and exhibited DNA binding and histone chaperone activities, as previously reported for the proteins purified by the baculovirus system. Therefore, these purification methods for human FANCI and FANCD2 provide novel procedures to facilitate structural and biochemical studies of human FANCI and FANCD2.
    Protein Expression and Purification 11/2014; 103. DOI:10.1016/j.pep.2014.08.012 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterochromatin protein 1 (HP1) is an evolutionar-ily conserved chromosomal protein that binds to lysine 9-methylated histone H3 (H3K9me), a hall-mark of heterochromatin. Although HP1 phospho-rylation has been described in several organisms, the biological implications of this modification re-main largely elusive. Here we show that HP1's phos-phorylation has a critical effect on its nucleosome binding properties. By in vitro phosphorylation as-says and conventional chromatography, we demon-strated that casein kinase II (CK2) is the kinase primarily responsible for phosphorylating the N-terminus of human HP1␣. Pull-down assays using in vitro-reconstituted nucleosomes showed that un-modified HP1␣ bound H3K9-methylated and H3K9-unmethylated nucleosomes with comparable affin-ity, whereas CK2-phosphorylated HP1␣ showed a high specificity for H3K9me3-modified nucleosomes. Electrophoretic mobility shift assays showed that CK2-mediated phosphorylation diminished HP1␣'s intrinsic DNA binding, which contributed to its H3K9me-independent nucleosome binding. CK2-mediated phosphorylation had a similar effect on the nucleosome-binding specificity of fly HP1a and S. pombe Swi6. These results suggested that HP1 phos-phorylation has an evolutionarily conserved role in HP1's recognition of H3K9me-marked nucleosomes.
    Nucleic Acids Research 10/2014; DOI:10.1093/nar/gku995 · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Actin and actin-related proteins (Arps), which are members of the actin family, are essential components of many of these remodeling complexes. Actin, Arp4, Arp5, and Arp8 are found to be evolutionarily conserved components of the INO80 chromatin remodeling complex, which is involved in transcriptional regulation, DNA replication, and DNA repair. A recent report showed that Arp8 forms a module in the INO80 complex and this module can directly capture a nucleosome. In the present study, we showed that recombinant human Arp8 binds to DNAs, and preferentially binds to single-stranded DNA. Analysis of the binding of adenine nucleotides to Arp8 mutants suggested that the ATP-binding pocket, located in the evolutionarily conserved actin fold, plays a regulatory role in the binding of Arp8 to DNA. To determine the cellular function of Arp8, we derived tetracycline-inducible Arp8 knockout cells from a cultured human cell line. Analysis of results obtained after treating these cells with aphidicolin and camptothecin revealed that Arp8 is involved in DNA repair. Together with the previous observation that Arp8, but not γ-H2AX, is indispensable for recruiting INO80 complex to DSB in human, results of our study suggest an individual role for Arp8 in DNA repair.
    PLoS ONE 10/2014; 9(10):e108354. DOI:10.1371/journal.pone.0108354 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab) fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph) and acetylated H3K9 (H3K9ac). These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye∶protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green), Cy3 (red), and Cy5 or CF640 (far-red).
    PLoS ONE 09/2014; 9(9):e106271. DOI:10.1371/journal.pone.0106271 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleosomes are extremely stable histone-DNA complexes that form the building blocks of chromatin, which accommodates genomic DNA within the nucleus. The dynamic properties of chromatin play essential roles in regulating genomic DNA functions, such as DNA replication, recombination, repair, and transcription. Histones are the protein components of nucleosomes, and their diverse modifications and variants increase the versatility of nucleosome structures and their dynamics in chromatin. Therefore, a technique to evaluate the physical properties of nucleosomes would facilitate functional studies of the various nucleosomes. In this report, we describe a convenient assay for evaluating the thermal stability of nucleosomes in vitro.
    Methods 09/2014; 70(2-3). DOI:10.1016/j.ymeth.2014.08.019 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to promote the RAD51-mediated homologous pairing in nucleosomal DNA. In higher eukaryotes, most nucleosomes form higher-ordered chromatin containing the linker histone H1. However, the mechanism by which RAD51/RAD54-mediated homologous pairing occurs in higher-ordered chromatin has not been elucidated. In this study, we found that a histone chaperone, Nap1, accumulates on DSB sites in human cells, and DSB repair is substantially decreased in Nap1-knockdown cells. We determined that Nap1 binds to RAD54, enhances the RAD54-mediated nucleosome remodeling by evicting histone H1, and eventually stimulates the RAD51-mediated homologous pairing in higher-ordered chromatin containing histone H1.
    Scientific Reports 05/2014; 4:4863. DOI:10.1038/srep04863 · 5.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Fanconi anemia (FA) pathway is critically involved in the maintenance of hematopoietic stem cells and the suppression of carcinogenesis. A key FA protein, FANCD2, is monoubiquitinated and accumulates in chromatin in response to DNA interstrand crosslinks (ICLs), where it coordinates DNA repair through mechanisms that are still poorly understood. Here, we report that CtIP protein directly interacts with FANCD2. A region spanning amino acids 166 to 273 of CtIP and monoubiquitination of FANCD2 are both essential for the FANCD2-CtIP interaction and mitomycin C (MMC)-induced CtIP foci. Remarkably, both FANCD2 and CtIP are critical for MMC-induced RPA2 hyperphosphorylation, an event that accompanies end resection of double-strand breaks. Collectively, our results reveal a role of monoubiquitinated FANCD2 in end resection that depends on its binding to CtIP during ICL repair.
    Cell Reports 04/2014; 7(4). DOI:10.1016/j.celrep.2014.04.005 · 7.21 Impact Factor

Publication Stats

3k Citations
839.33 Total Impact Points

Institutions

  • 2004–2015
    • Waseda University
      • • Graduate School of Advanced Science and Engineering
      • • Department of Electrical Engineering and Bioscience
      • • Department of Computer Science and Engineering
      Edo, Tōkyō, Japan
    • Yokohama City University
      Yokohama, Kanagawa, Japan
  • 2011
    • Nihon University
      • Department of Applied Biological Science
      Edo, Tōkyō, Japan
  • 2008
    • Meisei University
      Edo, Tōkyō, Japan
  • 2006
    • Fujita Health University
      Nagoya, Aichi, Japan
  • 1999–2003
    • RIKEN
      • Laboratory for Cell Signaling
      Вако, Saitama, Japan
  • 2002
    • Kyoto University
      Kioto, Kyōto, Japan
  • 2001
    • Japan Science and Technology Agency (JST)
      Edo, Tōkyō, Japan