Helen M Taylor

London School of Hygiene and Tropical Medicine, Londinium, England, United Kingdom

Are you Helen M Taylor?

Claim your profile

Publications (7)23.26 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the malaria parasite was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the parasite life cycle, the stage that causes malaria pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage parasites allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for > or =6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum parasites expressing a compound 1-insensitive PfPKG. The mutant parasites were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against malaria.
    Eukaryotic Cell 11/2009; 9(1):37-45. · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium-dependent protein kinases (CDPKs) of Apicomplexan parasites are crucial for the survival of the parasite throughout its life cycle. CDPK1 is expressed in the asexual blood stages of the parasite, particularly late stage schizonts. We have identified two substrates of Plasmodium falciparum CDPK1: myosin A tail domain-interacting protein (MTIP) and glideosome-associated protein 45 (GAP45), both of which are components of the motor complex that generates the force required by the parasite to actively invade host cells. Indirect immunofluorescence shows that CDPK1 localizes to the periphery of P. falciparum merozoites and is therefore suitably located to act on MTIP and GAP45 at the inner membrane complex. A proportion of both GAP45 and MTIP is phosphorylated in schizonts, and we demonstrate that both proteins can be efficiently phosphorylated by CDPK1 in vitro. A primary phosphorylation of MTIP occurs at serine 47, whereas GAP45 is phosphorylated at two sites, one of which could also be detected in phosphopeptides purified from parasite lysates. Both CDPK1 activity and host cell invasion can be inhibited by the kinase inhibitor K252a, suggesting that CDPK1 is a suitable target for antimalarial drug development.
    Journal of Biological Chemistry 11/2008; 283(45):30980-30989. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium-dependent protein kinases (CDPKs) of Apicomplexan parasites are crucial for the survival of the parasite throughout its life cycle. CDPK1 is expressed in the asexual blood stages of the parasite, particularly late stage schizonts. We have identified two substrates of Plasmodium falciparum CDPK1: myosin A tail domain-interacting protein (MTIP) and glideosome-associated protein 45 (GAP45), both of which are components of the motor complex that generates the force required by the parasite to actively invade host cells. Indirect immunofluorescence shows that CDPK1 localizes to the periphery of P. falciparum merozoites and is therefore suitably located to act on MTIP and GAP45 at the inner membrane complex. A proportion of both GAP45 and MTIP is phosphorylated in schizonts, and we demonstrate that both proteins can be efficiently phosphorylated by CDPK1 in vitro. A primary phosphorylation of MTIP occurs at serine 47, whereas GAP45 is phosphorylated at two sites, one of which could also be detected in phosphopeptides purified from parasite lysates. Both CDPK1 activity and host cell invasion can be inhibited by the kinase inhibitor K252a, suggesting that CDPK1 is a suitable target for antimalarial drug development.
    Journal of Biological Chemistry 10/2008; 283(45):30980-9. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Plasmodium falciparum, merozoite surface protein 7 (MSP7) was originally identified as a 22kDa protein on the merozoite surface and associated with the MSP1 complex shed during erythrocyte invasion. MSP7 is synthesised in schizonts as a 351-amino acid precursor that undergoes proteolytic processing. During biosynthesis the MSP1 and MSP7 precursors form a complex that is targeted to the surface of developing merozoites. In the sequential proteolytic processing of MSP7, N- and C-terminal 20 and 33kDa products of primary processing, MSP7(20) and MSP7(33) are formed and MSP7(33) remains bound to full length MSP1. Later in the mature schizont, MSP7(20) disappears from the merozoite surface and on merozoite release MSP7(33) undergoes a secondary cleavage yielding the 22kDa MSP7(22) associated with MSP1. In free merozoites, both MSP7(22) and a further cleaved product, MSP7(19) present only in some parasite lines, were detected; these two derivatives are shed as part of the protein complex with MSP1 fragments during erythrocyte invasion. Primary processing of MSP7 is brefeldin A-sensitive while secondary processing is resistant to both calcium chelators and serine protease inhibitors. Primary processing of MSP7 occurs prior to that of MSP1 in a post-Golgi compartment, whereas the secondary cleavage occurs on the surface of the developing merozoite, possibly at the time of MSP1 primary processing and well before the secondary processing of MSP1.
    Molecular and Biochemical Parasitology 02/2007; 151(1):59-69. · 2.24 Impact Factor
  • Molecular and Biochemical Parasitology 06/2006; 147(1):140-3. · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high molecular mass protein complex (RhopH) in the rhoptries of the malaria parasite consists of three distinct polypeptides with estimated sizes in Plasmodium falciparum of 155kDa (PfRhopH1), 140kDa (PfRhopH2) and 110kDa (PfRhopH3). Using a number of reagents, including a new mAb 4E10 that is specific for the PfRhopH complex, it was shown that the RhopH complex is synthesised during schizogony and transferred intact to the ring stage in newly invaded erythrocytes. The genes encoding RhopH1 and RhopH3 have already been identified and characterised in both P. falciparum and Plasmodium yoelii. In this report, we describe the identification of the gene for RhopH2 in both these parasite species. Peptide sequences were obtained from purified RhopH2 proteins and used to generate oligonucleotide primers and search malaria sequence databases. In a parallel approach, mAb 4E10 was used to identify a clone coding for RhopH2 from a P. falciparum cDNA library. The sequences of both P. falciparum and P. yoelii genes for RhopH2 were completed and compared. They both contain nine introns and there is a high degree of similarity between the deduced amino acid sequences of the two proteins. The P. falciparum gene is a single copy gene located on chromosome 9, and is transcribed in schizonts.
    Molecular and Biochemical Parasitology 04/2003; 127(1):47-57. · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PfRH protein family of Plasmodium falciparum is implicated in erythrocyte invasion. Here we report variations in the sequence, transcription, and protein expression of four different members of this family in three parasite lines, 3D7, T996, and FCB1. There are sequence polymorphisms in PfRH1, PfRH2a, PfRH2b, and PfRH3, ranging from variations across repeat regions to a 585-bp deletion in the 3' end of PfRH2b in T996. Not all the genes are transcribed: although all members of the family are transcribed in 3D7 and T996, PfRH2a and PfRH2b are not transcribed in FCB1. The PfRH1, PfRH2a, and PfRH2b proteins are expressed in late schizonts and merozoites and are located in apical organelles and on the apical surface. However, the PfRH1 protein does not appear to be correctly targeted to the apex in 3D7 and T996. In contrast, the PfRH1 protein is present at the apical end of FCB1 merozoites, but the PfRH2a and PfRH2b proteins are undetectable. The apparent redundancy in the PfRH family of proteins at the level of gene number and sequence and the variations in transcription and protein expression may allow the parasite to use alternative invasion pathways.
    Infection and Immunity 11/2002; 70(10):5779-89. · 4.16 Impact Factor

Publication Stats

242 Citations
23.26 Total Impact Points

Institutions

  • 2009
    • London School of Hygiene and Tropical Medicine
      Londinium, England, United Kingdom
  • 2008–2009
    • University of Glasgow
      • Wellcome Trust Centre for Molecular Parasitology
      Glasgow, SCT, United Kingdom
    • Medical Research Council (UK)
      Londinium, England, United Kingdom
  • 2002–2007
    • MRC National Institute for Medical Research
      • Division of Parasitology
      London, ENG, United Kingdom