Andréa C Fogaça

University of São Paulo, San Paulo, São Paulo, Brazil

Are you Andréa C Fogaça?

Claim your profile

Publications (10)33.64 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF), the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS) were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.
    PLoS ONE 01/2013; 8(10):e77388. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Insect storage proteins accumulate at high levels during larval development of holometabolous insects. During metamorphosis they are degraded, supplying energy and amino acids for the completion of adult development. The genome of Culex quinquefasciatus contains eleven storage protein-coding genes. Their transcripts are more abundant in larvae than in pupae and in adults. In fact, only four of these genes are transcribed in adults, two of which in blood-fed adult females but not in adult males. Transcripts corresponding to all Cx. quinquefasciatus storage proteins were detected by RT-PCR, while mass spectrometric analysis of larval and pupal proteins identified all storage proteins with the exception of one encoded by Cq LSP1.8. Our results indicate that the identified Cx. quinquefasciatus storage protein-coding genes are candidates for identifying regulatory sequences for the development of molecular tools for vector control.
    PLoS ONE 01/2013; 8(10):e77664. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.
    FEMS Microbiology Letters 03/2010; 306(2):152-9. · 2.05 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.
    Parasites & Vectors 01/2010; 3:63. · 3.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Arthropods display different mechanisms to protect themselves against infections, among which antimicrobial peptides (AMPs) play an important role, acting directly against invader pathogens. We have detected several factors with inhibitory activity against Candida albicans and Micrococcus luteus on the surface and in homogenate of eggs of the tick Rhipicephalus (Boophilus) microplus. One of the anti-M. luteus factors of the egg homogenate was isolated to homogeneity. Analysis by electrospray mass spectrometry (ESI-MS) revealed that it corresponds to microplusin, an AMP previously isolated from the cell-free hemolymph of R. (B.) microplus. Reverse transcription (RT) quantitative polymerase chain reactions (qPCR) showed that the levels of microplusin mRNA gradually increase along ovary development, reaching an impressive highest value three days after the adult females have dropped from the calf and start oviposition. Interestingly, the level of microplusin mRNA is very low in recently laid eggs. An enhance of microplusin gene expression in eggs is observed only nine days after the onset of oviposition, achieving the highest level just before the larva hatching, when the level of expression decreases once again. Fluorescence microscopy analysis using an anti-microplusin serum revealed that microplusin is present among yolk granules of oocytes as well as in the connecting tube of ovaries. These results, together to our previous data, suggest that microplusin may be involved not only in protection of adult female hemocele, but also in protection of the female reproductive tract and embryos, what points this AMP as a considerable target for development of new methods to control R. (B.) microplus as well as the vector-borne pathogens.
    Developmental and comparative immunology 09/2009; 33(8):913-9. · 3.29 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2'-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 microM ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X. fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
    Journal of bacteriology 05/2008; 190(7):2368-78. · 3.94 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The presence of an effective immune response in the hemocoel of arthropods is essential for survival as it prevents the invasion of pathogens throughout the animal body. Antimicrobial peptides (AMPs) play an important role in this response by rapidly killing invading microorganisms. In this study, a novel cysteine-rich AMP has been isolated and characterized from the hemocytes of the cattle tick, Boophilus microplus. In addition to growth inhibition of Escherichia coli and Micrococcus luteus, the newly described AMP, designated ixodidin (derived from the Family Ixodidae), was found to exert proteolytic inhibitory activity against two exogenous serine proteinases, elastase and chymotrypsin. This is the first report of a molecule of an arachnid that has been shown to inhibit bacterial growth and proteinase activity.
    Peptides 05/2006; 27(4):667-74. · 2.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Antimicrobial peptides (AMPs) are components of the immune system of both vertebrate and invertebrate animals. This study describes the isolation, primary structure, cDNA cloning, and tissue expression profile of two cysteine-rich AMPs from the hemolymph of the cattle tick Boophilus microplus. A 10,204 Da polypeptide, with six cysteine residues and no sequence similarity to any known molecule, was isolated from the cell-free hemolymph. Because of its sequence originality, this peptide was named microplusin. The second AMP was isolated from the hemocytes of B. microplus. This peptide, with a molecular mass of 4285 Da and six cysteines, is a defensin with similarity to the insect defensin family members. The cDNA cloning established that microplusin is synthesized as a prepeptide while the tick defensin is synthesized as a prepromolecule. Interestingly, despite the fact that microplusin and defensin have been isolated from different compartments, their gene expression was found to have similar tissue distribution.
    Developmental & Comparative Immunology 04/2004; 28(3):191-200. · 3.24 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We report the isolation of a novel antimicrobial peptide, acanthoscurrin, from the hemocytes of unchallenged tarantula spider Acanthoscurria gomesiana. A combination of Edman degradation, mass spectrometry and cDNA cloning revealed the presence of two isoforms of acanthoscurrin, differing by two glycine residues. Both displayed cationic properties and a high percentage of glycine residues. However, acanthoscurrins have no structural similarities with already known glycine-rich antimicrobial peptides from animals and plants. As deduced from cDNA cloning and mass spectrometry, the amino acid sequence of acanthoscurrin begins with a putative signal peptide of 23 amino acids followed by the mature peptide, which is post-translationally modified by a C-terminal amidation. Acanthoscurrins are constitutively expressed in hemocytes and released to plasma following an immune challenge.
    Developmental & Comparative Immunology 11/2003; 27(9):781-91. · 3.24 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Antifungal and antibacterial activities were detected in the hemolymph and gut contents of the cattle tick, Boophilus microplus. A peptide with antibacterial activity from the tick gut contents was purified to homogeneity by reversed-phase chromatography. The molecular mass of the purified peptide was 3,205.7 Da, measured by matrix-assisted laser desorption/ionization mass spectrometry. The amino acid sequence was obtained by Edman degradation and showed that the peptide was identical to a fragment of the bovine alpha-hemoglobin. A synthetic peptide based on the sequence obtained showed characterization data identical to those of the isolated material, confirming its structure. The synthetic peptide was active in micromolar concentrations against Gram-positive bacteria and fungi. These data led us to conclude that the antibacterial activity detected in tick gut contents is the result of enzymatic processing of a host protein, hemoglobin. This activity may be used by ticks as a defense against microorganisms.
    Journal of Biological Chemistry 10/1999; 274(36):25330-4. · 4.65 Impact Factor