Larissa Fernandes

University of Brasília, Brasília, Federal District, Brazil

Are you Larissa Fernandes?

Claim your profile

Publications (17)51.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. Results: The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style.
    BMC Genomics 10/2014; 15:943. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fungal infections are often difficult to treat due to the inherent similarities between fungal and animal cells and the resulting host toxicity from many antifungal compounds. Cryptococcus neoformans is an opportunistic fungal pathogen of humans that causes life-threatening disease, primarily in immunocompromised patients. Since antifungal therapy for this microorganism is limited, many investigators have explored novel drug targets aim at virulence factors, such as the ability to grow at mammalian physiological temperature (37°C). To address this issue, we used the Agrobacterium tumefaciens gene delivery system to create a random insertion mutagenesis library that was screened for altered growth at elevated temperatures. Among several mutants unable to grow at 37°C, we explored one bearing an interruption in the URA4 gene. This gene encodes dihydroorotase (DHOase) that is involved in the de novo synthesis of pyrimidine ribonucleotides. Loss of the C. neoformans Ura4 protein, by targeted gene interruption, resulted in an expected uracil/uridine auxotrophy and an unexpected high temperature growth defect. In addition, the ura4 mutant displayed phenotypic defects in other prominent virulence factors (melanin, capsule and phospholipase) and reduced stress response compared to wild type and reconstituted strains. Accordingly, this mutant had a decreased survival rate in macrophages and attenuated virulence in a murine model of cryptococcal infection. Quantitative PCR analysis suggests that this biosynthetic pathway is induced during the transition from 30°C to 37°C, and that transcriptional regulation of de novo and salvage pyrimidine pathway are under the control of the Ura4 protein.
    Fungal Genetics and Biology 07/2014; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The thermodimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the etiologic agents of Paracoccidioidomycosis (PCM), the most important endemic systemic mycosis in Latin America. Paracoccidioides grows as saprophytic mycelia that produce infective conidia propagules, which are inhaled into the lungs where the fungus converts to the pathogenic yeast form. From the lungs, Paracoccidioides may disseminate through blood and lymphatics to several other organs and tissues. During the last decade we have witnessed the generation of a large amount of transcriptomic data regarding the events leading to the morphological transition and host niche adaptation. In this review we summarize those findings and discuss the consequence of gene expression plasticity in the persistence and survival of this pathogen. In addition, we discuss the future trends on the host-pathogen studies and how new molecular strategies, such as RNA-seq, dual RNA-seq and Chip-Seq can be powerful tools to improve our understanding on the pathobiology of this systemic mycosis in Latin America.
    Fungal Genetics and Biology 02/2014; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fungal infections are often difficult to treat due to the inherent similarities between fungal and animal cells and the resulting host toxicity from many antifungal compounds. Cryptococcus neoformans is an opportunistic fungal pathogen of humans that causes life-threatening disease, primarily in immunocompromised patients. Since antifungal therapy for this microorganism is limited, many investigators have explored novel drug targets aim at virulence factors, such as the ability to grow at mammalian physiological temperature (37°C). To address this issue, we used the Agrobacterium tumefaciens gene delivery system to create a random insertion mutagenesis library that was screened for altered growth at elevated temperatures. Among several mutants unable to grow at 37°C, we explored one bearing an interruption in the URA4 gene. This gene encodes dihydroorotase (DHOase) that is involved in the de novo synthesis of pyrimidine ribonucleotides. Loss of the C. neoformans Ura4 protein, by targeted gene interruption, resulted in an expected uracil/uridine auxotrophy and an unexpected high temperature growth defect. In addition, the ura4 mutant displayed phenotypic defects in other prominent virulence factors (melanin, capsule and phospholipase) and reduced stress response compared to wild type and reconstituted strains. Accordingly, this mutant had a decreased survival rate in macrophages and attenuated virulence in a murine model of cryptococcal infection. Quantitative PCR analysis suggests that this biosynthetic pathway is induced during the transition from 30°C to 37°C, and that transcriptional regulation of de novo and salvage pyrimidine pathway are under the control of the Ura4 protein.
    Fungal Genetics and Biology 01/2014; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virulence of Cryptococcus neoformans for mammals, and in particular its intracellular style, was proposed to emerge from evolutionary pressures on its natural environment by protozoa predation, which promoted the selection of strategies that allow intracellular survival in macrophages. In fact, Acanthamoeba castellanii ingests yeast cells, which then can replicate intracellularly. In addition, most fungal factors needed to establish infection in the mammalian host are also important for survival within the amoeba. To better understand the origin of C. neoformans virulence, we compared the transcriptional profile of yeast cells internalized by amoebae and murine macrophages after 6 h of infection. Our results showed 656 and 293 genes whose expression changed at least two-fold in response to the intracellular environments of amoebae and macrophages, respectively. Among the genes that were found in both groups, we focused on the ORF CNAG_05662, which was potentially related to sugar transport but with no determined biological function. To characterize its function, we constructed a mutant strain and evaluated its ability to grow on various carbon sources. The results showed that this gene, named PTP1 (Polyol Transporter Protein 1), is involved in the transport of 5- and 6-carbon polyols such as mannitol and sorbitol, but its presence or absence had no effect on cryptococcal virulence for mice or moth larvae. Overall, these results are consistent with the hypothesis that the capacity for mammalian virulence originated from fungal-protozoal interactions in the environment and provide a better understanding of how C. neoformans adapts to the mammalian host.
    Eukaryotic Cell 03/2013; · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virulence of Cryptococcus neoformans for mammals, and in particular its intracellular style, was proposed to emerge from evo-lutionary pressures on its natural environment by protozoan predation, which promoted the selection of strategies that allow intracellular survival in macrophages. In fact, Acanthamoeba castellanii ingests yeast cells, which then can replicate intracellu-larly. In addition, most fungal factors needed to establish infection in the mammalian host are also important for survival within the amoeba. To better understand the origin of C. neoformans virulence, we compared the transcriptional profile of yeast cells internalized by amoebae and murine macrophages after 6 h of infection. Our results showed 656 and 293 genes whose expression changed at least 2-fold in response to the intracellular environments of amoebae and macrophages, respectively. Among the genes that were found in both groups, we focused on open reading frame (ORF) CNAG_05662, which was potentially related to sugar transport but had no determined biological function. To characterize its function, we constructed a mutant strain and evaluated its ability to grow on various carbon sources. The results showed that this gene, named PTP1 (polyol transporter pro-tein 1), is involved in the transport of 5-and 6-carbon polyols such as mannitol and sorbitol, but its presence or absence had no effect on cryptococcal virulence for mice or moth larvae. Overall, these results are consistent with the hypothesis that the capac-ity for mammalian virulence originated from fungus-protozoan interactions in the environment and provide a better under-standing of how C. neoformans adapts to the mammalian host. C ryptococcus neoformans is an opportunistic pathogen often found in soils contaminated with bird excreta (1). Infection by C. neoformans, which occurs through inhalation of propagules from the environment by the host, seems to be accidental since C. neoformans is a saprophytic fungus that does not require an ani-mal host for replication and survival (2). In the case of human exposure to C. neoformans, the establishment of infection and subsequent development of cryptococcosis depend both on the host's immune response and the virulence of the fungus (3) One of the first lines of defense in the lung are alveolar macrophages, which are able to phagocytose C. neoformans efficiently (4). Phagocytosis is followed by phagosome acidification and fusion of lysosomes (5). However, this process does not always result in the death of yeast cells and C. neoformans can survive and replicate within macrophages in vivo, as shown by Feldmesser et al. (6). The ability of C. neoformans to survive in the intracellular en-vironment of phagocytes might have a critical role in disease pro-gression and probably contributes to the propensity of the fungus to cause chronic and latent infections (3, 7, 8). However, it is known that the intracellular microenvironment of phagocytes is extremely inhospitable to internalized microorganisms due to nu-tritional and oxidative stress and exposure to antimicrobial pep-tides and hydrolytic enzymes (9, 10, 11). To survive the harsh environment of the phagosome, C. neoformans is able to repro-gram its gene expression profile. Twenty-four hours after phago-cytosis by murine macrophages, C. neoformans responds to car-bon starvation by upregulating genes that encode sugar transporters and proteins involved in the utilization of alternative carbon sources, including enzymes of the glyoxylate cycle and fatty acid metabolism. Genes related to the oxidative stress re-sponse were also induced (4). Since C. neoformans is a free-living fungus, its mammalian in-tracellular lifestyle is particularly curious, given that this organism has no obvious requirement for animal virulence in its life cycle. In this sense, the evolutionary origin and the maintenance of viru-lence strategies that allow for survival of C. neoformans within macrophages have been an issue of interest, and the investigation of the C. neoformans ecological niche may be informative in this regard. Steenbergen et al. (12) suggested that the competence of C. neoformans to proliferate within mammalian phagocytic cells was initially selected to confer an advantage against environmental predators. This idea was supported by the fact that interaction of C. neoformans with the amoeba Acanthamoeba castellanii results in the ingestion of the fungus followed by its intracellular replica-tion and the accumulation of vesicles containing polysaccharide in the cytoplasm of amoeboid cells (12). This result is similar to those previously observed in the interaction of C. neoformans with macrophages. Furthermore, mutant strains defective in capsule
    Eukaryotic Cell 01/2013; 12(5):761–774. · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermodimorphic fungi include most causative agents of systemic mycoses, but the molecular mechanisms that underlie their defining trait, i.e. the ability to shift between mould and yeast on temperature change alone, remain poorly understood. We hypothesised that the heat shock factor (Hsf), a protein that evolved to sense thermal stimuli quickly, might play a role in this process in addition to the known regulator Drk1 and the Ryp proteins. To test this hypothesis, we characterised the Hsf from the thermodimorph Paracoccidioides lutzii (formerly Paracoccidioides brasiliensis isolate 01). We show in the present work that PlHsf possesses regulatory domains that are exclusive of the Eurotiomycetidae family, suggesting evolutionary specialisation; that it can successfully rescue the otherwise lethal loss of the native protein of Saccharomyces cerevisiae; and that its DNA-binding domain is able to recognise regulatory elements from the promoters of both Drk1 and Ryp1. An in silico screening of all 1 kb sequences upstream of P. lutzii ORFs revealed that 7% of them possess a heat shock element. This is the first description of a heat shock factor in a thermodimorphic fungus.
    Fungal Genetics and Biology 06/2011; 48(10):947-55. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paracoccidioidomycosis (PCM) is a systemic disease endemic to most of Latin America, with greatest impact in rural areas. The taxonomic status of one of the best studied Paracoccidioides isolates (Pb01) as P. brasiliensis remains unresolved due to its genomic differences from the other three previously described phylogenetic species (S1, PS2 and PS3; Carrero et al., 2008. Fungal Genet. Biol. 45, 605). Using the genealogic concordance method of phylogenetic species recognition (GCPSR) via maximum parsimony and Bayesian analysis, we identified a clade of 17 genotypically similar isolates, including Pb01, which are distinct from the S1/PS2/P3 clade. Consistent with GCPSR, this "Pb01-like" group can be considered a new phylogenetic species, since it is strongly supported by all independent and concatenated genealogies. "Pb01-like" species exhibit great sequence and morphological divergence from the S1/PS2/PS3 species clade, and we estimate that these groups last shared a common ancestor approximately 32 million years ago. In addition, recombination analysis revealed independent events inside both main groups suggesting reproductive isolation. Consequently, we recommend the formal description of the "Pb01-like" cluster as the new species Paracoccidioides lutzii, a tribute to Adolpho Lutz, discoverer of P. brasiliensis in 1908.
    Molecular Phylogenetics and Evolution 05/2009; 52(2):273-83. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Paracoccidioides brasiliensis is a dimorphic fungus that causes the most prevalent systemic mycosis in Latin America. The response to heat shock is involved in pathogenesis, as this pathogen switches from mycelium to yeast forms in a temperature dependent fashion that is essential to establish infection. HSP90 is a molecular chaperone that helps in the folding and stabilization of selected polypeptides. HSP90 family members have been shown to present important roles in fungi, especially in the pathogenic species, as an immunodominant antigen and also as a potential antifungal therapeutic target. In this work, we decided to further study the Pbhsp90 gene, its expression and role in cell viability because it plays important roles in fungal physiology and pathogenesis. Thus, we have sequenced a Pbhsp90 cDNA and shown that this gene is present on the genome as a single copy. We have also confirmed its preferential expression in the yeast phase and its overexpression during dimorphic transition and oxidative stress. Treatment of the yeast with the specific HSP90 inhibitors geldanamycin and radicicol inhibited growth at 2 and 10 microM, respectively. The data confirm that the Pbhsp90 gene encodes a morphologically regulated and stress-responsive protein whose function is essential to cell viability of this pathogen. This work also enforces the potential of HSP90 as a target for antifungal therapies, since the use of HSP90 inhibitors is lethal to the P. brasiliensis yeast cells in a dose-responsive manner.
    BMC Microbiology 10/2008; 8:158. · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Paracoccidioides brasiliensis is a thermo-dimorphic fungus that causes a human systemic mycosis with high incidence in Latin America. Owing to their participation in the control of pathogen morphogenesis, differentiation and virulence, it was decided to characterize ras genes in P. brasiliensis. ras1 and ras2 were identified to be coding for two different proteins with high identity. The ras transcriptional pattern was investigated by reverse transcription PCR (RT-PCR) during mycelium-to-yeast (M-->Y) transition, heat shock at 42 degrees C and after internalization of yeast cells by murine macrophages. Both genes were downregulated inside macrophages and ras1, at 42 degrees C. In contrast, ras genes did not show any transcriptional variation during the M-->Y transition. The fact that Ras proteins are attached to the membrane via farnesylation prompted the use of a farnesyltransferase inhibitor to investigate the importance of this process for vegetative growth and dimorphic transition. Farnesylation blockage interfered with the vegetative growth of yeast cells and stimulated germinative tube production even at 37 degrees C. During Y-->M transition, the inhibitor increased filamentation in a dose-dependent manner, indicating that impaired farnesylation favours the mycelium form of P. brasiliensis. The results suggest that ras genes might have a role in dimorphism, heat shock response and in host-pathogen interaction.
    FEMS Yeast Research 03/2008; 8(2):300-10. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Paracoccidioiddes brasiliensis is a thermodimorphic fungus endemic to Latin America, where it causes the most prevalent systemic mycosis, paracoccidioidomycosis (PCM). DNA microarray technology has been used to identify patterns of gene expression when a microbe is confronted with conditions of interest, such as in vitro and/or ex vivo interaction with specific cells. P. brasiliensis is one organism that has benefited from this approach. Even though its genome has not been sequenced yet, much has been discovered from its transcriptome and DNA array analyses. In this review, we will outline the current knowledge in P. brasiliensis transcriptome, with focus on differential expression analysis in vitro and on the discussion of the genes that are controlled during the host-pathogen interaction ex vivo in order to give insights into the pathobiology of this fungus. In vitro experiments enabled the delineation of whole metabolic pathways; the description of differential metabolism between mycelium and yeast cells and of the mainly signaling pathways controlling dimorphism, high temperature growth, thermal and oxidative stress, and virulence/ pathogenicity. Recent ex vivo experiments provided advances on the comprehension of the plasticity of response and indicate that P. brasiliensis is not only able to undergo fast and dramatic expression profile changes but can also discern subtle differences, such as whether it is being attacked by a macrophage or submitted to the bloodstream route conditions.
    Mycopathologia 01/2008; 165(4-5):249-58. · 1.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background Paracoccidioides brasiliensis is a dimorphic fungus that causes the most prevalent systemic mycosis in Latin America. The response to heat shock is involved in pathogenesis, as this pathogen switches from mycelium to yeast forms in a temperature dependent fashion that is essential to establish infection. HSP90 is a molecular chaperone that helps in the folding and stabilization of selected polypeptides. HSP90 family members have been shown to present important roles in fungi, especially in the pathogenic species, as an immunodominant antigen and also as a potential antifungal therapeutic target. Results In this work, we decided to further study the Pbhsp90 gene, its expression and role in cell viability because it plays important roles in fungal physiology and pathogenesis. Thus, we have sequenced a Pbhsp90 cDNA and shown that this gene is present on the genome as a single copy. We have also confirmed its preferential expression in the yeast phase and its overexpression during dimorphic transition and oxidative stress. Treatment of the yeast with the specific HSP90 inhibitors geldanamycin and radicicol inhibited growth at 2 and 10 μM, respectively. Conclusion The data confirm that the Pbhsp90 gene encodes a morphologically regulated and stress-responsive protein whose function is essential to cell viability of this pathogen. This work also enforces the potential of HSP90 as a target for antifungal therapies, since the use of HSP90 inhibitors is lethal to the P. brasiliensis yeast cells in a dose-responsive manner.
    BMC Microbiology 01/2008; · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation - cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-beta-glucosidase) in mycelium cells; and ags (an alpha-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport - two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells - isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.
    BMC Genomics 02/2006; 7:208. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cryptococcus neoformans Ras1 protein serves as a central regulator for several signaling pathways. Ras1 controls the induction of the mating pheromone response cascade as well as a distinct signaling pathway that allows this pathogenic fungus to grow at human physiological temperature. To characterize elements of the Ras1-dependent high-temperature growth pathway, we performed a multicopy suppressor screen, identifying genes whose overexpression allows the ras1 mutant to grow at 37 degrees C. Using this genetic technique, we identified a C. neoformans gene encoding a Rac homolog that suppresses multiple ras1 mutant phenotypes. Deletion of the RAC1 gene does not affect high-temperature growth. However, a rac1 mutant strain demonstrates a profound defect in haploid filamentation as well as attenuated mating. In a yeast two-hybrid assay, Rac1 physically interacts with the PAK kinase Ste20, which similarly regulates hyphal formation in this fungus. Similar to Rac1, overexpression of the STE20alpha gene also restores high-temperature growth to the ras1 mutant. These results support a model in which the small G protein Rac1 acts downstream of Ras proteins and coordinately with Ste20 to control high-temperature growth and cellular differentiation in this human fungal pathogen.
    Eukaryotic Cell 07/2005; 4(6):1066-78. · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rise in antifungal resistance, observed as a result of the increasing numbers of immunocompromised patients, has made the discovery of new targets for drug therapy imperative. The description of the Paracoccidioides brasiliensis transcriptome has allowed us to find alternatives to refine current therapy against paracoccidioidomycosis. We used comparative analysis of expressed sequence tags to find promising drug targets that have been addressed in other pathogens. We divided the analysis into six different categories, based on the involvement of the targeted mechanisms in the cell: i) cell wall construction, ii) plasma membrane composition, iii) cellular machinery, iv) cellular metabolism, v) signaling pathways, and vi) other essential processes. Through this approach, it has been possible to infer strategies to develop alternative drugs against this pathogen.
    Genetics and molecular research: GMR 02/2005; 4(2):430-49. · 0.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human fungal pathogen Paracoccidioides brasiliensis is an ascomycete that displays a temperature-dependent dimorphic transition, appearing as a mycelium at 22 degrees C and as a yeast at 37 degrees C, this latter being the virulent form. We report on the in silico search made of the P. brasiliensis transcriptome-expressed sequence tag database for components of signaling pathways previously known to be involved in morphogenesis and virulence in other species of fungi, including Saccharomyces cerevisiae, Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus. Using this approach, it was possible to identify several protein cascades in P. brasiliensis, such as i) mitogen-activated protein kinase signaling for cell integrity, cell wall construction, pheromone/mating, and osmo-regulation, ii) the cAMP/PKA system, which regulates fungal development and virulence, iii) the Ras protein, which allows cross-talking between cascades, iv) calcium-calmodulin-calcineurin, which controls cell survival under oxidative stress, high temperature, and membrane/cell wall perturbation, and v) the target of rapamycin pathway, controlling cell growth and proliferation. The ways in which P. brasiliensis responds to the environment and modulates the expression of genes required for its survival and virulence can be inferred through comparison with other fungi for which this type of data is already available.
    Genetics and molecular research: GMR 02/2005; 4(2):216-31. · 0.99 Impact Factor
  • Source
    Marcelo A Vallim, Larissa Fernandes, J Andrew Alspaugh
    [Show abstract] [Hide abstract]
    ABSTRACT: Many small G proteins require post-translational modification to allow functional association to the cell membrane. This process often involves the enzymic addition of hydrophobic prenyl groups to a conserved cysteine residue near the C-terminus of the protein. The enzymes that catalyse these reactions include protein farnesyltransferase and protein geranylgeranyltransferases. The human fungal pathogen Cryptococcus neoformans requires functional Ras and Rho proteins in order to undergo normal growth and differentiation. Since farnesylation and geranylgeranylation are likely required for the proper function of these small G proteins, we hypothesized that inhibition of these prenylation events would alter the growth and cellular morphogenesis of this fungus. We cloned the RAM1 gene encoding the single protein-farnesyltransferase beta-chain homologue in C. neoformans. Using a gene-disruption strategy in a diploid C. neoformans strain, we demonstrated that this gene encodes an essential function, in contrast to the case in Saccharomyces cerevisiae, in which the homologous RAM1 gene is not essential for growth. Pharmacological inhibition of farnesyltransferase activity resulted in dose-dependent cytostasis of C. neoformans, as well as prevention of hyphal differentiation. Simultaneous inhibition of farnesylation and calcineurin signalling results in a synthetic effect on growth. Protein farnesylation is required for the growth and cellular differentiation of C. neoformans and may provide novel targets for antifungal therapy.
    Microbiology 07/2004; 150(Pt 6):1925-35. · 2.85 Impact Factor