Sven Dänicke

MSD Animal Health, Germany, Schleisheim, Bavaria, Germany

Are you Sven Dänicke?

Claim your profile

Publications (325)445.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Effects of grinding and hydro-thermal treatment of feed on growth performance, slaughter traits, nutrient digestibility, stomach content and stomach health were examined by using 96 crossbred fattening pigs. Pigs were fed a grain-soybean meal-based diet processed by various technical treatments. Feeding groups differed in particle size after grinding (finely vs. coarsely ground feed) and hydro-thermal treatment (without hydro-thermal treatment, pelleting, expanding, expanding and pelleting). Fine grinding and hydro-thermal treatment showed significant improvements on the digestibility of crude nutrients and content of metabolisable energy. Hydro-thermal treatment influenced average daily gain (ADG) and average daily feed intake (DFI) significantly. Finely ground pelleted feed without expanding enhanced performances by increasing ADG and decreasing feed-to-gain ratio (FGR) of fattening pigs. Coarsely ground feed without hydro-thermal treatment resulted in the highest ADG and DFI, however also in the highest FGR. Expanded feed decreased DFI and ADG. Slaughter traits were not affected by treatments. Coarsely ground feed without hydro-thermal treatment had protective effects on the health of gastric pars nonglandularis, however, pelleting increased gastric lesions. Hydro-thermal treatment, especially expanding, resulted in clumping of stomach content which possibly induced satiety by slower ingesta passage rate and thus decreased feed intake. Pigs fed pelleted feed showed less pronounced development of clumps in stomach content compared with expanded feed.
    Archives of Animal Nutrition 10/2015; DOI:10.1080/1745039X.2015.1087748 · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study examined the short-term effects of deoxynivalenol (DON), administered at two different concentrations via a feed preparation using naturally contaminated wheat, on feed intake, liver and kidney metabolism and immunomodulatory properties in horses. Twelve geldings were randomly assigned to one of three dietary treatments for 21 days. DON was provided via naturally contaminated wheat (14.6 ± 6.5 mg DON/kg dry matter). The daily feed intake was adjusted to 4 kg of wheat and 1.7 kg of silage per 100 kg of body weight (BW). Horses were fed one of the following diets: control wheat with 0 % contaminated wheat (CON), wheat mixture containing 53 ± 2 % of DON-contaminated wheat [low DON intake (LDI)] or wheat mixture containing 78 ± 4 % of DON-contaminated wheat [high DON intake (HDI)]. CON, LDI and HDI corresponded to a targeted daily DON intake via the complete ration of <5, 50 and 75 μg/kg BW, respectively. None of the horses demonstrated any clinical signs commonly associated with the intake of DON such as colic or depression. HDI was associated with lower daily wheat intake on day 21. Serum DON concentrations increased with higher DON intake. The non-toxic DON metabolite, deepoxy-deoxynivalenol (DOM-1) was only detected on day 21 of the DON feeding period. No changes in haematological and serum parameters or serum globulins or in the ex vivo proliferation response of peripheral blood mononuclear cells were observed. These results suggest that horses are less sensitive to DON exposure than other domestic species, for example, swine. Therefore, the European Commission guidance value for critical DON concentrations in swine feed (complete diet) of 0.9 mg/kg could be safely applied for rations intended for feeding adult horses as well.
    Mycotoxin Research 09/2015; DOI:10.1007/s12550-015-0234-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: The porcine intestinal epithelium is a primary target for mycotoxin deoxynivalenol (DON) and lipopolysaccharides (LPS). Although epithelial cells are exposed to these toxins mainly from the luminal-chyme compartment an exposure from the blood side resulting from systemic absorption cannot be excluded. Thus, we investigated the effect of DON and LPS, alone or combined, on porcine intestinal epithelial cells IPEC-J2 on a transcriptional, translational and functional level when administered either from apical or basolateral.
    Toxicology Letters 09/2015; DOI:10.1016/j.toxlet.2015.09.019 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mycotoxin zearalenone (ZEN) is frequently contaminating animal feeds including feed used in aquaculture. In the present study, the effects of dietary exposure to ZEN on carp (Cyprinus carpio L.) were investigated. ZEN at three different concentrations (low dose: 332 µg kg(-1), medium dose: 621 µg kg(-1) and high dose: 797 µg kg(-1) final feed, respectively) was administered to juvenile carp for four weeks. Additional groups received the mycotoxin for the same time period but were fed with the uncontaminated diet for two more weeks to examine the reversibility of the ZEN effects. No effects on growth were observed during the feeding trial, but effects on haematological parameters occurred. In addition, an influence on white blood cell counts was noted whereby granulocytes and monocytes were affected in fish treated with the medium and high dose ZEN diet. In muscle samples, marginal ZEN and α-zearalenol (α-ZEL) concentrations were detected. Furthermore, the genotoxic potential of ZEN was confirmed by analysing formation of micronuclei in erythrocytes. In contrast to previous reports on other fish species, estrogenic effects measured as vitellogenin concentrations in serum samples were not increased by dietary exposure to ZEN. This is probably due to the fact that ZEN is rapidly metabolized in carp.
    Toxins 09/2015; 7(9):3465-3480. DOI:10.3390/toxins7093465 · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well observed that feeding energy-dense diets in dairy cows during the dry period can cause metabolic imbalances after parturition. Especially dairy cows with high body condition score (BCS) and fed an energy-dense diet were prone to develop production diseases due to metabolic disturbances postpartum. An experiment was conducted to determine the effects of an energy-dense diet and nicotinic acid (NA) on production and metabolic variables of primiparous and multiparous cows in late pregnancy and early lactation which were not pre-selected for high BCS. Thirty-six multiparous and 20 primiparous German Holstein cows with equal body conditions were fed with energy-dense (60% concentrate/40% roughage mixture; HC group) or adequate (30% concentrate/70% roughage mixture; LC group) diets prepartum. After parturition, concentrate proportion was dropped to 30% for all HC and LC groups and was increased to 50% within 16 days for LC and within 24 days for HC cows. In addition, half of the cows per group received 24 g NA supplement per day and cow aimed to attenuate the lipid mobilisation postpartum. Feeding energy-dense diets to late-pregnant dairy cows elevated the dry matter (p < 0.001) and energy intake (p < 0.001) as well as the energy balance (p < 0.001) without affecting the BCS (p = 0.265) during this period. However, this did not result in any metabolic deviation postpartum as the effects of prepartum concentrate feeding were not carried over into postpartum period. Multiparous cows responded more profoundly to energy-dense feeding prepartum compared with primiparous cows, and parity-related differences in the transition from late pregnancy to lactation were obvious pre- and postpartum. The supplementation with 24 g NA did not reveal any effect on energy metabolism. This study clearly showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in multiparous and primiparous cows not selected for high BCS. A genetic predisposition for an anabolic metabolic status as indicated by high BCS may be crucial for developing production diseases at the onset of lactation.
    Archives of animal nutrition 09/2015; 69(5):319-339. DOI:10.1080/1745039X.2015.1073002 · 1.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large areas of peatlands in Germany and the Netherlands are affected by drainage and high nitrogen deposition. Sheep grazing is a common extensive management activity on drained peatlands, in particular on nature protection areas. However, input of easily mineralisable material such as sheep excrements could enhance degradation of soil organic carbon (Corg), thereby increasing the effect of these ecosystems on national GHG budgets. Thus, a microcosm experiment on the influence of sheep excreta on GHG emissions from a histic Gleysol with strongly degraded peat was set up. The 15N and 13C stable isotope tracer technique was used to partition sources of CO2 and N2O. Labeled sheep faeces and urine were obtained by feeding enriched material. Undisturbed soil columns were treated with surface application of urine, faeces or mixtures of both in different label combinations to distinguish between direct effects and possible priming effects. Incubation was done under stable temperature and precipitation conditions. Fluxes as well as 15N and 13C enrichment of N2O and CO2, respectively, were measured for three weeks. Addition of sheep excreta increased emission of total CO2 in proportion to the added carbon amounts. There was no CO2 priming in the peat. No effect on CH4 and N2O was observed under the aerobic experimental conditions. The N2O–N source shifted from peat to excreta, which indicates negative priming, but priming was not significant. The results indicate that sheep excreta do not significantly increase GHG emissions from degraded peat soils. Considering the degraded peatland preserving benefits, sheep grazing on peatlands affected by drainage and high nitrogen deposition should be further promoted.
    Soil Biology and Biochemistry 09/2015; 88:282–293. DOI:10.1016/j.soilbio.2015.06.001 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibition of dipeptidyl peptidase-4 (DPP4) via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA) and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332) for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight) was well tolerated in healthy lactating pluriparous cows (n = 6) with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12). The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days) or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity) increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic control like it is shown in humans, but was able to impact hyperlipemia, as NEFA and TG decreased.
    PLoS ONE 08/2015; 10(8):e0136078. DOI:10.1371/journal.pone.0136078 · 3.23 Impact Factor
  • Sven Dänicke · Janine Winkler
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the review was to evaluate the opportunities for diagnosing the zearalenone (ZEN) exposure and intoxication of farm animals by analyzing biological specimens for ZEN residue levels. Metabolism is discussed to be important when evaluating species-specific consequences for the overall toxicity of ZEN. Besides these toxicological facts, analytics of ZEN residues in various animal-derived matrices requires sensitive, matrix-adapted multi-methods with low limits of quantification, which is more challenging than the ZEN analysis in feed. Based on dose-response experiments with farm animals, the principle usability of various specimens as bio-indicators for ZEN exposure is discussed with regard to individual variation and practicability for the veterinary practitioner. ZEN residue analysis in biological samples does not only enable evaluation of ZEN exposure but also allows the risk for the consumer arising from contaminated foodstuffs of animal origin to be assessed. It was compiled from literature that the tolerable daily intake of 0.25 μg ZEN/kg body weight and day is exploited to approximately 8 %, when a daily basket of animal foodstuffs and associated carry over factors are assumed at reported ZEN contamination levels of complete feed. Copyright © 2015. Published by Elsevier Ltd.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 08/2015; DOI:10.1016/j.fct.2015.08.009 · 2.90 Impact Factor
  • H Sadri · S Dänicke · Ulrich Meyer · J Rehage · J Frank · H Sauerwein
    [Show abstract] [Hide abstract]
    ABSTRACT: The fat-soluble vitamin E comprises the 8 structurally related compounds (congeners) α-, β-, γ-, and δ-tocopherol (with a saturated side chain) and α-, β-, γ-, and δ-tocotrienol (with a 3-fold unsaturated side chain). Little is known regarding the blood and liver concentrations of the 8 vitamin E congeners during the transition from pregnancy to lactation in dairy cows. We thus quantified tocopherols (T) and tocotrienols (T3) in serum and liver and hepatic expression of genes involved in vitamin E metabolism in pluriparous German Holstein cows during late gestation and early lactation and investigated whether dietary supplementation (from d 1 in milk) with conjugated linoleic acids (CLA; 100 g/d; each 12% of trans-10,cis-12 and cis-9,trans-11 CLA; n = 11) altered these compared with control-fat supplemented cows (CTR; n = 10). Blood samples and liver biopsies were collected on d -21, 1, 21, 70, and 105 (liver only) relative to calving. In both groups, the serum concentrations of αT, γT, βT3, and δT3 increased from d -21 to d 21 and remained unchanged between d 21 and 70, but were unaffected by CLA. The concentrations of the different congeners of vitamin E in liver did not differ between the CTR and the CLA groups. In both groups, the concentrations of the vitamin E forms in liver changed during the course of the study. The hepatic mRNA abundance of genes controlling vitamin E status did not differ between groups, but α-tocopherol transfer protein and tocopherol-associated protein mRNA increased with time of lactation in both. In conclusion, the concentrations of vitamin E congeners and the expression of genes related to vitamin E status follow characteristic time-related changes during the transition from late gestation to early lactation but are unaffected by CLA supplementation at the dosage used. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
    Journal of Dairy Science 07/2015; DOI:10.3168/jds.2015-9710 · 2.57 Impact Factor
  • Á Kenéz · R Tienken · L Locher · U Meyer · A Rizk · J Rehage · S Dänicke · K Huber
    [Show abstract] [Hide abstract]
    ABSTRACT: Dairy cattle will mobilize large amounts of body fat during early lactation as an effect of decreased lipogenesis and increased lipolysis. Regulation of lipid metabolism involves fatty acid synthesis from acetate and β-adrenergic-stimulated phosphorylation of hormone-sensitive lipase (HSL) and perilipin in adipocytes. Although basic mechanisms of mobilizing fat storage in transition cows are understood, we lack a sufficiently detailed understanding to declare the exact regulatory network of these in a broad range of dairy cattle. The objective of the present study was to quantify 1) protein abundance of fatty acid synthase (FAS), 2) extent of phosphorylation of HSL and perilipin in vivo, and 3) β-adrenergic stimulated lipolytic response of adipose tissues in vitro at different stages of the periparturient period. We fed 20 German Holstein cows an energy-dense or an energetically adequate diet prepartum and 0 or 24 g/d nicotinic acid (NA) supplementation. Biopsy samples of subcutaneous and retroperitoneal adipose tissue were obtained at d 42 prepartum (d -42) and at d 1, 21, and 100 postpartum (d +1, d +21, d +100, respectively). To assess β-adrenergic response, tissue samples were incubated with 1 μ isoproterenol for 90 min at 37°C. The NEFA and glycerol release, as well as HSL and perilipin phosphorylation, was measured as indicators of in vitro stimulated lipolysis. In addition, protein expression of FAS and extent of HSL and perilipin phosphorylation were measured in fresh, nonincubated samples. There was no effect of dietary energy density or NA on the observed variables. The extent of HSL and perilipin phosphorylation under isoproterenol stimulation was strongly correlated with the release of NEFA and glycerol, consistent with the functional link between β-adrenergic-stimulated protein phosphorylation and lipolysis. In the nonincubated samples, FAS protein expression was decreased at d +1 and d +21, whereas HSL and perilipin phosphorylation increased from d -42 to d +1 and remained at an increased level throughout the first 100 d of lactation. In vitro lipolytic response was significant in prepartum samples at times when in vivo lipolysis was only minimally activated by phosphorylation. These data extend our understanding of the complex nature of control of lipolysis and lipogenesis in dairy cows and could be useful to the ongoing development of systems biology models of metabolism to help improve our quantitative knowledge of the cow.
    Journal of Animal Science 07/2015; 94:4012. DOI:10.2527/jas2014-8833 · 2.11 Impact Factor
  • Source
    S Häussler · C Sacré · K Friedauer · S Dänicke · H Sauerwein
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to examine the mRNA abundance of the monocyte chemoattractant protein-1 (MCP-1) and to localize the MCP-1 protein in different subcutaneous (s.c.) and visceral (v.c.) fat depots in high-yielding dairy cows. Early-lactating German Holstein cows (n = 25) were divided into a control (CON) and a conjugated linoleic acids (CLA)-supplemented group to investigate potential effects of dietary CLA treatment on MCP-1. The MCP-1 was localized in different s.c. and v.c. adipose tissue (AT) by immunohistochemistry, whereas the mRNA abundance was investigated using quantitative PCR. Albeit the infiltration of immune cells into bovine AT has been demonstrated to be only marginal, both MCP-1 protein and mRNA could be detected in bovine AT depots. The MCP-1 protein was localized both in the cytoplasm of adipocytes and in the cytoplasm of cells from the stromal vascular fraction; however, the number of MCP-1-positive cells was low. The mRNA abundances of MCP-1 were higher in v.c. compared with s.c. AT. Moreover, neither mRNA abundance nor protein expression of MCP-1 was seriously influenced by CLA supplementation of early-lactating dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
    Journal of Dairy Science 06/2015; 98(9). DOI:10.3168/jds.2014-9256 · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dairy cows mobilize large amounts of body fat during early lactation to overcome negative energy balance which typically arises in this period. As an adaptation process, adipose tissues of cows undergo extensive remodeling during late pregnancy and early lactation. The objective of the present study was to characterize this remodeling to get a better understanding of adaptation processes in adipose tissues, affected by changing metabolic conditions including lipid mobilization and refilling as a function of energy status. This was done by determining adipocyte size in histological sections of subcutaneous and retroperitoneal adipose tissue biopsy samples collected from German Holstein cows at 42 days prepartum, and 1, 21, and 100 days postpartum. Characterization of cell size changes was extended by the analysis of DNA, triacylglycerol, and protein content per gram tissue, and β-actin protein expression in the same samples. In both adipose tissue depots cell size was becoming smaller during the course of the study, suggesting a decrease in cellular triacylglycerol content. Results of DNA, triacylglycerol, and protein content, and β-actin protein expression could only partially explain the observed differences in cell size. The retroperitoneal adipose tissue exhibited a greater extent of time-related differences in cell size, DNA, and protein content, suggesting greater dynamics and metabolic flexibility for this abdominal depot compared to the investigated subcutaneous depot.
    PLoS ONE 05/2015; 10(5):e0127208. DOI:10.1371/journal.pone.0127208 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The peripartal period of dairy cows is associated with a higher incidence of infectious diseases like mastitis or metritis, particularly in high-yielding animals. The onset of lactation induces a negative energy balance and a shift of glucose distribution toward the udder. Glucose is used as primary fuel by monocytes which give rise to macrophages, key cells in the defense against pathogens. The aim of this study was to analyze whether animals with high or low body condition score (BCS) differ in composition and glucose uptake capacities of bovine monocyte subsets. Blood samples were taken from 27 dairy cows starting 42 days before parturition until day 56 after parturition. The cows were allocated to two groups according to their BCS. A feeding regime was applied, in which the BCS high group received higher amounts of concentrate before parturition and concentrate feeding was more restricted in the BCS high group after parturition compared with the BCS low group, to promote postpartal lipolysis and enhance negative energy balance in the BCS high group. Blood cell counts of classical (cM), intermediate (intM) and nonclassical monocytes (ncM) were increased at day 7 after calving. In the BCS low group intM numbers were significantly higher compared to the BCS high group at day 7 after parturition. Within the BCS low group cows suffering from mastitis or metritis showed significantly higher numbers of cM, intM and ncM at day 7 after parturition. Classical monocytes and intM showed similar glucose uptake capacities while values for ncM were significantly lower. Compared with antepartal capacities and irrespective of BCS and postpartal mastitis or metritis, glucose uptake of all monocyte subsets decreased after parturition. In conclusion, whereas glucose uptake capacity of bovine monocyte subsets is altered by parturition, it is not linked to the energy supply of the animals or to postpartal infectious diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
    Veterinary Immunology and Immunopathology 05/2015; 166(1-2). DOI:10.1016/j.vetimm.2015.04.007 · 1.54 Impact Factor
  • H. Sadri · S. Dänicke · J. Rehage · J. Frank · H. Sauerwein
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin E in its natural form comprises eight different compounds, i.e. α-, β-, γ-, and δ forms of each tocopherol (T) and –tocotrienol (T3). The most abundant form of tocopherols, α-tocopherol (αT), is the only form used to supplement animal feed. However, T3 exhibit some unique physiological functions that are not entirely shared by tocopherols (1). In contrast to αT, little is known about plasma and tissue concentrations of T3 in humans and animals. The increase in vitamin E status of laboratory animals supplemented with conjugated linoleic acids (CLA) attracted interest in the interaction between vitamin E and CLA (2). Thus, our study aimed to characterize the concentrations of the different vitamin E congeners in serum and in liver and the hepatic gene expression of factors related to vitamin E metabolism in dairy cows during early lactation, and to test the effects of a dietary supplement with CLA. Methods: Twenty one pluriparous German Holstein cows were randomly assigned to receive either 100 g/d CLA (n = 11; Lutrell pure, BASF, Germany; each 12% of trans-10, cis-12 and cis-9, trans-11 CLA) or a control fat supplement (Silafat, BASF; CTR; n = 10) from days in milk 1 to 182. Blood samples and liver biopsies were collected on d -21, 1, 21, 70, and 105 (liver only) relative to calving. Serum and liver concentrations of vitamin E congeners were quantified by HPLC. The mRNA abundance of α-tocopherol transfer protein (TPP), α-tocopherol associated protein (TAP), and cytochrome P450 4F2 (CYP4F2) were quantified by real-time RT-PCR. Data were analyzed by the MIXED model with treatment, time, and interaction of treatment and time as the fixed effects and cow as the random effect. Results: In the CLA group, mean dry matter intake (21.2 ± 0.24 kg/d; mean ± SEM) did not differ from the CTR group (22.3 ± 0.24 kg/d). There were no significant differences in any of the serum concentrations of the various forms of vitamin E between the CTR and the CLA group. The serum concentrations of αT, γT, βT3, and δT3 changed over time (P < 0.01) and followed a similar pattern in both groups, i.e. showing an increase from d -21 to d 21 and remaining largely unchanged between d 21 and d 70. No CLA by time interactions were observed for the serum concentrations of vitamin E forms except for γT3 (P = 0.06). The molar ratio of the serum vitamin E isoforms to cholesterol was not affected by the CLA supplementation. The molar ratio of all forms of vitamin E to cholesterol in the serum changed during the course of the study (P ≤ 0.02). There were no differences in any of the liver concentrations of various congeners of vitamin E between the CTR and the CLA group. Time-related changes in the liver concentrations of the vitamin E forms were noted in both experimental groups (P < 0.05; P = 0.07 in case of γT3). The hepatic mRNA abundance of genes related to vitamin E metabolism did not differ between the two groups. In the CTR group, TTP mRNA increased during the course of the study from d -21 to 1.62-fold values on d 105 (P < 0.01). There was a trend observed for the interaction between treatment and time for the mRNA abundance of TTP (P = 0.10). In the post partum period, the abundance of mRNA encoding TAP was greater (P < 0.001) on d 105 than on d 70 (2.80- and 2.70-fold for the CTR and CLA group, respectively). The mRNA abundance of CYP4F2 did not change over time and there was also no treatment by time interaction. Conclusion: All four congeners of T3 were detected in serum and liver of dairy cows during late gestation and early lactation, albeit at distinctively lower concentrations than αT and γT. Increasing mRNA expression of TPP with days in milk in the CTR group may point to an involvement of TTP in the increase of αT concentrations in the serum. Finally, our data indicate time-dependent changes in the serum and liver concentrations of the vitamin E congeners and in the hepatic expression of genes related to vitamin E metabolism that were largely unaffected by CLA supplementation.
    69th Conference of the Society of Nutrition Physiology (GfE), Göttingen; 04/2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction.
    Toxins 03/2015; 7(3):791-811. DOI:10.3390/toxins7030791 · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mainly produced in adipose tissue (AT), leptin is involved in the regulation of energy metabolism. In dairy cows, leptin is upregulated during late lactation and decreased before parturition, when body reserves are re-filled to prepare the animal for the subsequent lactation. The number of mitochondria, the main cellular energy suppliers, increased in AT during fattening in nonlactating dairy cows (1). Based on the metabolic effects leptin exerts in AT, we hypothesized that circulating leptin serum concentrations are related to the number of mitochondria in bovine AT. We aimed to investigate the association between circulating leptin concentrations and the mitochondrial (mt) DNA copy number, reflecting the number of mitochondria within a cell, in relation to adipocyte sizes from dairy cows with increasing body condition. In addition, programmed cell death (apoptosis), which is negatively correlated to adipocyte size in bovine, has been determined. Eight nonpregnant, nonlactating German Holstein cows (age: 4 – 6 years) were moved from a straw diet to a high energy diet by stepwise increasing the concentrate and silage portions from 0 to 60 % and 0 to 40 % of DM within 6 weeks (wk). This diet was maintained for further 9 wk. The mean body weight (BW) gain per cow was 243 ± 33.3 kg and body condition score (BCS) increased from 2.3 ± 0.4 to 4.5 ± 0.4 throughout the experiment (P = 0.001). Blood samples were collected each month and serum leptin concentrations were quantified by ELISA. Subcutaneous AT from the tailhead region was biopsied at the onset, after 8, and 15 wk of the experiment. The samples were either snap frozen in liquid nitrogen for isolating genomic DNA or were fixed in 4% formaldehyde for subsequent paraffin embedding and evaluation of adipocyte sizes (µm²) as well as for the analysis of apoptosis by a TUNEL assay. The relative mtDNA copy number/cell was quantified by a multiplex qPCR targeting the 12S rRNA gene using the ß-globin as an endogenous nuclear control gene. Calculation of mtDNA copies/cell was described earlier (2). Data were analyzed using linear mixed models and associations between parameters were assessed by the Spearman correlation (SPSS). Adipocytes tended to be enlarged (P = 0.090) and both mtDNA copy numbers and leptin concentrations increased 4.7-fold and 2.2-fold, respectively, until wk 8 of the trial. Moreover, the portion of apoptotic cells decreased 2.5-fold (P = 0.026) within the first 8 wks of the trial. Thereafter, all variables investigated herein were not further increased at the end of the trial. Positive correlations were observed between mtDNA copies/cell and adipocyte sizes ( = 0.388, P = 0.067), leptin ( = 0.707, P < 0.001), BW ( = 0.596, P = 0.003) and BCS ( = 0.503, P = 0.012). Increased mtDNA content in enlarged adipocyte sizes may sustain or even increase the energy supply, thus the portion of apoptotic cells was decreased. Leptin might inhibit lipid accumulation (3) and increasing leptin concentrations may thus inhibit a further enlargement of the adipocytes, leading to stagnating mtDNA copies/cells. Stable adipocyte sizes on the other hand will lead to stagnating leptin concentrations.
    69th Conference of the Society of Nutrition Physiology (GfE), Göttingen, Germany; 03/2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: A dose-response study was carried out to examine the carryover of zearalenone (ZEN), deoxynivalenol (DON) and their metabolites into bovine milk. Therefore, a feeding trial with 30 dairy cows fed with three different levels of Fusarium (FUS) toxin-contaminated maize was performed. A control group (0.02 mg ZEN kg(-1) dry matter (DM) and 0.07 DON kg(-1) DM) was compared with two groups fed contaminated diets. The first diet contained 0.33 mg ZEN kg(-1) DM and 2.62 mg DON kg(-1) DM (group FUS-50) and the second diet contained 0.66 mg ZEN kg(-1) DM and 5.24 mg DON kg(-1) DM (group FUS-100). For milk sample analysis, a new cost-efficient sample preparation method was developed for the simultaneous determination of ZEN, DON and their metabolites. The method comprised the separation of the milk fat followed by an SPE clean-up on Oasis HLB and a LC-MS/MS measurement. The less toxic metabolite de-epoxy-DON had the highest detected concentration (5.6 ng ml(-1) milk) in the milk samples obtained from the feeding trial. Additionally, ZEN (up to 0.29 ng ml(-1)), α-zearalenol (up to 0.17 ng ml(-1)), β-zearalenol (up to 0.95 ng ml(-1)) and DON (up to 2.5 ng ml(-1)) were detected in these samples. The milk toxin concentrations of cows fed the control diet were significantly lower compared with cows fed the contaminated diet. The calculated carryover rates ranged between 0 and 0.0075 for ZEN and metabolites and between 0 and 0.0017 for DON independent of exposure. It can be concluded that dietary toxin concentrations in the feed below or close to the current guidance values do not pose a risk for consumers due to negligible carryover rates.
    Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 03/2015; 32(3):371-380. DOI:10.1080/19440049.2015.1011714 · 1.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It was hypothesized that long-term intake of a diet contaminated with deoxynivalenol (DON) and differing in the proportion of concentrate might affect hepatocellular integrity and function as well as biomarkers of systemic inflammation in lactating dairy cows. In Period 1 (11 weeks), 26 lactating German Holstein cows (13 primiparous and 13 pluriparous, 31 days in milk, 522 kg body weight, on average) were divided into two groups and fed diets (50% concentrate) with (MYC, n = 12; on average 5.3 mg DON/kg DM) or without (CON, n = 14) DON contaminations. In Period 2 (16 weeks), each group was further divided into two groups to test whether elevated concentrate proportion as additional burden might enhance the toxicity of DON. The cows in MYC60 (n = 6; 4.6 mg DON/kg DM) and CON60 (n = 7) received the diet with 60% concentrate, while cows in MYC30 (n = 6; 4.4 mg DON/kg DM) and CON30 (n = 7) received the diet with 30% concentrate. Blood samples were taken in biweekly intervals for activities of aspartate amino transferase (AST), glutamate dehydrogenase (GLDH) and gamma-glutamyl transferase as well as for concentration of total bilirubin and haptoglobin. Biopsies from liver were collected in week 27 for morphological analyses. No DON effect was found for the variables assessed in blood. The diet with 60% concentrate led to higher activities of AST and GLDH in Period 2. No morphological change was found by both light and electron microscopic analyses of liver samples. Results indicated that long-term intake of DON-contaminated diet over 27 weeks led to neither relevant damages of hepatocytes nor systemic inflammatory responses in lactating dairy cows, even if the dietary concentrate proportion was increased to 60%. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
    J Anim Physiol a Anim Nutr 03/2015; 99(5). DOI:10.1111/jpn.12293 · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutritional and environmental conditions around conception and during early embryonic development may have significant effects on health and well-being in adult life. Here, a bovine heifer model was used to investigate the effects of rumen-protected fat supplementation on oocyte quality and embryo development. Holstein-Friesian heifers (n=84) received a dietary supplement consisting of rumen-protected conjugated linoleic acid (CLA) or stearic acid (SA), each on top of an isocaloric basic diet. Oocytes were collected via ultrasound-guided follicular aspiration and subjected to in vitro maturation followed by either desorption electrospray ionisation mass spectrometry (DESI-MS) for lipid profiling of individual oocytes or in vitro fertilisation and embryo culture. The type of supplement significantly affected lipid profiles of in vitro-matured oocytes. Palmitic acid and plasmalogen species were more abundant in the mass spectra of in vitro-matured oocytes after rumen-protected SA supplementation when compared with those collected from animals supplemented with CLA. Lipid concentrations in blood and follicular fluid were significantly affected by both supplements. Results show that rumen-protected fatty-acid supplementation affects oocyte lipid content and may pave the way for the establishment of a large-animal model for studies towards a better understanding of reproductive disorders associated with nutritional impairments.
    Reproduction Fertility and Development 02/2015; DOI:10.1071/RD14352 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using an established model in which subclinical ketosis is induced, the response of differential blood counts and levels of various haematological variables, including the inflammatory marker haptoglobin (Hp), were tested over the last six weeks of parturition until the 56th day post-partum in cows with lower or higher body condition scores (LBC and HBC, respectively; n = 9/group). Animals in the HBC group evidenced subclinical ketosis whereas LBC animals were metabolically healthy. For in vitro examination with ß-hydroxybutyrate (BHB) as a further stimulus, peripheral blood mononuclear cell (PBMC) counts of cows with and without subclinical ketosis (n = 5/group) were observed. Counts of leucocytes, granulocytes and lymphocytes (LY) peaked at day 1 post-partum in HBC cows, with a more marked increase in heifers. In subclinical ketosis LY count increased again, with significantly higher values in the HBC group. The red blood cell (RBC) profile was affected by parity (counts were higher in heifers). Hp showed a positive linear correlation with BHB and non-esterified fatty acids (NEFA; R(2) = 0.41). PBMC from cows that were not pre-stressed with subclinical ketosis were more sensitive to increasing levels of BHB in vitro, as evidenced by both their higher proliferative capability and increased release of nitric oxide (NO). In summary, cows with subclinical ketosis showed a heightened immune response compared with metabolically healthy individuals, based on increased LY counts, increasing stimulative properties of PBMC and a relationship between Hp and typically increased values of BHB and NEFA. Concentrations of BHB in vivo during subclinical ketosis did not alter the proliferative capability of bovine PBMC in vitro, which was first significantly decreased at a dosage of 5 mM BHB.
    Archives of animal nutrition 02/2015; 69(2):1-15. DOI:10.1080/1745039X.2015.1013666 · 1.00 Impact Factor

Publication Stats

3k Citations
445.83 Total Impact Points


  • 2010–2015
    • MSD Animal Health, Germany
      Schleisheim, Bavaria, Germany
  • 2008–2015
    • Friedrich Loeffler Institute
      • Institute of Animal Nutrition
      Griefswald, Mecklenburg-Vorpommern, Germany
  • 2007
    • Hawaii Agriculture Research Center
      Honolulu, Hawaii, United States
  • 2005–2006
    • Centro Nacional de Investigaciones Agropecuarias
      Buenos Aires, Buenos Aires F.D., Argentina
  • 1995–2004
    • Martin Luther University of Halle-Wittenberg
      • Institute of Agricultural and Nutritional Sciences
      Halle-on-the-Saale, Saxony-Anhalt, Germany