Peter D Kwong

National Institute of Allergy and Infectious Diseases, 베서스다, Maryland, United States

Are you Peter D Kwong?

Claim your profile

Publications (254)2585.22 Total impact

  • Source
    Journal of Virology 12/2015; 89(1):883-5. DOI:10.1128/JVI.02621-14 · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Highly potent broadly neutralizing monoclonal antibodies (bNabs) have been obtained from individuals infected by HIV-1 group M variants. We analyzed the cross-group neutralization potency of these bNabs towards non-M primary isolates (PI). Material & methods: The sensitivity to neutralization was analyzed in a neutralization assay using TZM-bl cells. Twenty three bNabs were used, including reagents targeting the CD4 binding site (CD4bs), the N160 glycan-V1V2 site, the N332 glycan-V3 site, the membrane proximal external region of gp41, and complex epitopes spanning both Env subunits. Two bispecific antibodies that combine the inhibitory activity of an anti-CD4 with that of PG9 or PG16 (BibNabs) were included in the study (PG9-iMab and PG16-iMab). Results: Cross-group neutralization was observed only with the bNabs targeting the N160 glycan-V1V2 site. Four group O PIs, one group N PI and the group P PI were neutralized by PG9 and/or PG16 or PGT145 at low concentrations (0.04-9.39 µg/mL). None of the non-M PIs was neutralized by the bNabs targeting other regions at the highest concentration tested, except 10E8 that neutralized weakly two group N PIs and 35O22 that neutralized one group O PI. The BibNabs neutralized very efficiently all the non-M PIs with IC50 below 1 µg/mL, except two group O strains. Conclusion: The N160 glycan-V1V2 site is the most conserved neutralizing site within the four groups of HIV-1. This makes it an interesting target for the development of HIV vaccine immunogens. The corresponding bNabs may be useful for immunotherapeutic strategies in patients infected by non-M variants.
    JAIDS Journal of Acquired Immune Deficiency Syndromes 09/2015; DOI:10.1097/QAI.0000000000000854 · 4.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes. Here we report the structure-based development of an H1 HA stem-only immunogen that confers heterosubtypic protection in mice and ferrets. Six iterative cycles of structure-based design (Gen1-Gen6) yielded successive H1 HA stabilized-stem (HA-SS) immunogens that lack the immunodominant head domain. Antigenic characterization, determination of two HA-SS crystal structures in complex with stem-specific monoclonal antibodies and cryo-electron microscopy analysis of HA-SS on ferritin nanoparticles (H1-SS-np) confirmed the preservation of key structural elements. Vaccination of mice and ferrets with H1-SS-np elicited broadly cross-reactive antibodies that completely protected mice and partially protected ferrets against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 neutralizing activity in vitro. Passive transfer of immunoglobulin from H1-SS-np-immunized mice to naive mice conferred protection against H5N1 challenge, indicating that vaccine-elicited HA stem-specific antibodies can protect against diverse group 1 influenza strains.
    Nature medicine 08/2015; DOI:10.1038/nm.3927 · 27.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide mid-region, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates (IC50 as low as 270 nM). The co-crystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.
    Journal of Medicinal Chemistry 08/2015; DOI:10.1021/acs.jmedchem.5b00709 · 5.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.
    Nature Communications 07/2015; 6:7712. DOI:10.1038/ncomms8712 · 11.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon-optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypo-fusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized pre- and post-fusion versions of RSV F. In a hamster model, pre-fusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wt RSV challenge. In contrast, vector expressing the post-fusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the pre- or post-fusion conformation of RSV F. These studies provide an improved version of the previously-well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. Respiratory syncytial virus (RSV) and parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F insert. Here, we increased RSV F expression by codon optimization and by modifying the RSV F amino acid sequence to conform to that of an early passage of the original isolate. This resulted in a hypo-fusogenic phenotype, which likely represents the original phenotype before adaptation to cell culture. We also included stabilized versions of pre- and post-fusion RSV F protein. Pre-fusion RSV F induced a higher quantity and quality of RSV-neutralizing serum antibodies and was highly protective. This provides an improved candidate for further clinical evaluation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Journal of Virology 07/2015; 89(18). DOI:10.1128/JVI.01373-15 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.
    Nature Structural & Molecular Biology 06/2015; 22(7). DOI:10.1038/nsmb.3051 · 13.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by "DS-Cav1" mutations and by an appended C-terminal trimerization motif or "foldon" from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide "rings", with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen.
    PLoS ONE 06/2015; 10(6):e0128779. DOI:10.1371/journal.pone.0128779 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered β-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting-a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. Importance: HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine.
    Journal of Virology 06/2015; 89(17). DOI:10.1128/JVI.01232-15 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of human immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy. Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its immunogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 μg/ml, although immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses are controlled. IMPORTANCE Sustained interventions that can prevent HIV-1 infection are needed to halt the spread of the HIV-1 pandemic. The protective capacity of anti-HIV antibody gene therapy has been established in mouse models of HIV-1 infection but has not been established for primates. We show here a proof-of-concept that gene transfer of anti-HIV antibody genes can protect against infection by viruses that cause AIDS in primates when host immune responses are controlled.
    Journal of Virology 06/2015; 89(16):JVI.00908-15. DOI:10.1128/JVI.00908-15 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell 05/2015; DOI:10.1016/j.cell.2015.05.007 · 32.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.
    PLoS Pathogens 05/2015; 11(5):e1004932. DOI:10.1371/journal.ppat.1004932 · 7.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n=11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n=1). We found that bNabs directed against the CD4 binding site (n_10), peptidoglycans at the base of variable loop 3 (V3) (n=5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n=5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n=3) as well as llama-derived (heavy chain only) antibodies (n=6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Igmim2, CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized>90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4_ T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection.
    mBio 05/2015; 6(2). DOI:10.1128/mBio.00296-15 · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For nearly 20 years, the principal biological function of the HIV-2/SIV Vpx gene has been thought to be required for optimal virus replication in myeloid cells. Mechanistically, this Vpx activity was recently reported to involve the degradation of Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1) in this cell lineage. Here we show that when macaques were inoculated with either the T cell tropic SIVmac239 or the macrophage tropic SIVmac316 carrying a Vpx point mutation that abrogates the recruitment of DCAF1 and the ensuing degradation of endogenous SAMHD1 in cultured CD4+ T cells, virus acquisition, progeny virion production in memory CD4+ T cells during acute infection, and the maintenance of set-point viremia were greatly attenuated. Revertant viruses emerging in two animals exhibited an augmented replication phenotype in memory CD4+ T lymphocytes both in vitro and in vivo, which was associated with reduced levels of endogenous SAMHD1. These results indicate that a critical role of Vpx in vivo is to promote the degradation of SAMHD1 in memory CD4+ T lymphocytes, thereby generating high levels of plasma viremia and the induction of immunodeficiency.
    PLoS Pathogens 05/2015; 11(5):e1004928. DOI:10.1371/journal.ppat.1004928 · 7.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell 04/2015; 161(3). DOI:10.1016/j.cell.2015.03.004 · 32.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathogen-specific neutralizing antibodies protect against many viral infections and can potentially prevent HIV transmission in humans. However, neutralizing antibodies have so far only been shown to protect non-human primates (NHP) against lentiviral infection when given shortly before challenge. Thus, the clinical utility and feasibility of passive antibody transfer to confer long-term protection to HIV-1 is still debated. Here, we investigate the potential of a broadly neutralizing HIV-1 antibody to provide long-term protection in a NHP model of HIV-1 infection. A human antibody was simianized to avoid immune rejection and used to sustain therapeutic levels for ∼5 months. Two months after the final antibody administration, animals were completely protected against viral challenge. These findings demonstrate the feasibility and potential of long-term passive antibody for protection against HIV-1 in humans, and provides a model to test antibody therapies for other diseases in NHP. Antibodies against HIV are potential drugs that may be able to prevent HIV infection in humans. However the long-term protective capacity of antibodies against HIV has not been assessed. Here we repetitively administered a macaque version of a human anti-HIV antibody to monkeys after which the antibody persisted in the blood for more than five months. Moreover, the antibody could be sustained at protective levels for 108 days conferring protection 52 days after the last dose in a monkey model of HIV infection. Thus, antibody passive transfer can provide durable protection against infection by viruses that cause AIDS in primates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Journal of Virology 03/2015; 89(11). DOI:10.1128/JVI.00210-15 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained.
    Journal of Virology 03/2015; 89(10). DOI:10.1128/JVI.03451-14 · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antibody polyreactivity can be an obstacle to translating a candidate antibody into a clinical product. Standard tests such as antibody binding to cardiolipin, HEp-2 cells, or nuclear antigens provide measures of polyreactivity, but its causes and the means to resolve are often unclear. Here we present a method for eliminating antibody polyreactivity through the computational design and genetic addition of N-linked glycosylation near known sites of polyreactivity. We used the HIV-1-neutralizing antibody, VRC07, as a test case, since efforts to increase VRC07 potency at three spatially distinct sites resulted in enhanced polyreactivity. The addition of N-linked glycans proximal to the polyreactivity-enhancing mutations at each of the spatially distinct sites resulted in reduced antibody polyreactivity as measured by i) anti-cardiolipin ELISA, ii) Luminex AtheNA Multi-Lyte ANA binding, and iii) HEp-2 cell staining. The reduced polyreactivity trended with increased bioavailability in mice, but not with improved overall protein stability as measured by differential scanning calorimetry. Moreover, glycan proximity to the site of polyreactivity appeared to be a critical factor. The results provide evidence that antibody polyreactivity can result from local, rather than global, features of an antibody and that addition of N-linked glycosylation can be an effective approach to reducing antibody polyreactivity. This article is protected by copyright. All rights reserved. © 2015 The Protein Society.
    Protein Science 03/2015; 24(6). DOI:10.1002/pro.2682 · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. Areas covered: An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. Expert opinion: The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
    Expert Opinion on Therapeutic Targets 02/2015; 19(6):1-19. DOI:10.1517/14728222.2015.1010513 · 5.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 μg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 μg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 μg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.
    Nature 02/2015; 519(7541). DOI:10.1038/nature14264 · 41.46 Impact Factor

Publication Stats

20k Citations
2,585.22 Total Impact Points


  • 2003–2015
    • National Institute of Allergy and Infectious Diseases
      • Laboratory of Immunoregulation
      베서스다, Maryland, United States
    • National Institutes of Health
      베서스다, Maryland, United States
  • 2013
    • National Eye Institute
      베서스다, Maryland, United States
    • Max Planck Institute for Biophysical Chemistry
      Göttingen, Lower Saxony, Germany
  • 2012
    • University of Maryland, Baltimore
      • Institute of Human Virology
      Baltimore, Maryland, United States
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
    • Duke University Medical Center
      • Duke Human Vaccine Institute
      Durham, North Carolina, United States
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
    • National Institute of Infectious Diseases, Tokyo
      Edo, Tōkyō, Japan
    • Tulane University
      • Department of Pediatrics
      New Orleans, Louisiana, United States
  • 2010–2012
    • Harvard Medical School
      • Department of Pathology
      Boston, Massachusetts, United States
    • International AIDS Vaccine Initiative
      New York City, New York, United States
  • 2009–2012
    • National Institute of Allergy and Infectious Disease
      Maryland, United States
  • 2011
    • CUNY Graduate Center
      New York City, New York, United States
    • Simon Fraser University
      • Department of Molecular Biology and Biochemistry
      Burnaby, British Columbia, Canada
  • 2004–2009
    • The Scripps Research Institute
      • Department of Immunology and Microbial Science
      La Jolla, California, United States
    • Fachhochschule des bfi Wien
      Wien, Vienna, Austria
  • 2008
    • University of Alabama at Birmingham
      • Department of Microbiology
      Birmingham, AL, United States
  • 1998–2007
    • Dana-Farber Cancer Institute
      • Department of Cancer Immunology and AIDS
      Boston, MA, United States
    • Harvard University
      Cambridge, Massachusetts, United States
  • 1989–2007
    • Columbia University
      • Department of Biochemistry and Molecular Biophysics
      New York City, NY, United States
  • 2000–2002
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1996–2000
    • Centre d'Immunologie de Marseille-Luminy
      Marsiglia, Provence-Alpes-Côte d'Azur, France