Zoran Brkanac

University of Washington Seattle, Seattle, WA, United States

Are you Zoran Brkanac?

Claim your profile

Publications (18)82.74 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We carried out analyses with the goal of identifying rare variants in exome sequence data that contribute to disease risk for a complex trait. We analyzed a large, 47-member, multigenerational pedigree with 11 cases of autism spectrum disorder, using genotypes from 3 technologies representing increasing resolution: a multiallelic linkage marker panel, a dense diallelic marker panel, and variants from exome sequencing. Genome-scan marker genotypes were available on most subjects, and exome sequence data was available on 5 subjects. We used genome-scan linkage analysis to identify and prioritize the chromosome 22 region of interest, and to select subjects for exome sequencing. Inheritance vectors (IVs) generated by Markov chain Monte Carlo analysis of multilocus marker data were the foundation of most analyses. Genotype imputation used IVs to determine which sequence variants reside on the haplotype that co-segregates with the autism diagnosis. Together with a rare-allele frequency filter, we identified only one rare variant on the risk haplotype, illustrating the potential of this approach to prioritize variants. The associated gene, MYH9, is biologically unlikely, and we speculate that for this complex trait, the key variants may lie outside the exome.
    Human Heredity 01/2012; 74(3-4):153-64. · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural variations in the chromosome 22q11.2 region mediated by nonallelic homologous recombination result in 22q11.2 deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2) syndromes. The majority of del22q11.2 cases have facial and cardiac malformations, immunologic impairments, specific cognitive profile and increased risk for schizophrenia and autism spectrum disorders (ASDs). The phenotype of dup22q11.2 is frequently without physical features but includes the spectrum of neurocognitive abnormalities. Although there is substantial evidence that haploinsufficiency for TBX1 plays a role in the physical features of del22q11.2, it is not known which gene(s) in the critical 1.5 Mb region are responsible for the observed spectrum of behavioral phenotypes. We identified an individual with a balanced translocation 46,XY,t(1;22)(p36.1;q11.2) and a behavioral phenotype characterized by cognitive impairment, autism, and schizophrenia in the absence of congenital malformations. Using somatic cell hybrids and comparative genomic hybridization (CGH) we mapped the chromosome-22 breakpoint within intron 7 of the GNB1L gene. Copy number evaluations and direct DNA sequencing of GNB1L in 271 schizophrenia and 513 autism cases revealed dup22q11.2 in two families with autism and private GNB1L missense variants in conserved residues in three families (P = 0.036). The identified missense variants affect residues in the WD40 repeat domains and are predicted to have deleterious effects on the protein. Prior studies provided evidence that GNB1L may have a role in schizophrenia. Our findings support involvement of GNB1L in ASDs as well.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 11/2011; 159B(1):61-71. · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID-associated phenotypes compared to autism (p = 9.58 × 10(-11), odds ratio = 4.59), dyslexia (p = 3.81 × 10(-18), odds ratio = 14.45), or controls (p = 2.75 × 10(-17), odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4 × 10(-6), odds ratio = 6) or ID (16%, p = 3.55 × 10(-12), odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33).
    PLoS Genetics 11/2011; 7(11):e1002334. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two functionally related genes, FOXP2 and CNTNAP2, influence language abilities in families with rare syndromic and common nonsyndromic forms of impaired language, respectively. We investigated whether these genes are associated with component phenotypes of dyslexia and measures of sequential motor ability. Quantitative transmission disequilibrium testing (QTDT) and linear association modeling were used to evaluate associations with measures of phonological memory (nonword repetition, NWR), expressive language (sentence repetition), reading (real word reading efficiency, RWRE; word attack, WATT), and timed sequential motor activities (rapid alternating place of articulation, RAPA; finger succession in the dominant hand, FS-D) in 188 family trios with a child with dyslexia. Consistent with a prior study of language impairment, QTDT in dyslexia showed evidence of CNTNAP2 single nucleotide polymorphism (SNP) association with NWR. For FOXP2, we provide the first evidence for SNP association with component phenotypes of dyslexia, specifically NWR and RWRE but not WATT. In addition, FOXP2 SNP associations with both RAPA and FS-D were observed. Our results confirm the role of CNTNAP2 in NWR in a dyslexia sample and motivate new questions about the effects of FOXP2 in neurodevelopmental disorders.
    Journal of Neurodevelopmental Disorders 03/2011; 3(1):39-49. · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID-associated phenotypes compared to autism (p = 9.58x10(-11), odds ratio = 4.59), dyslexia (p = 3.81x10(-18), odds ratio = 14.45), or controls (p = 2.75x10(-17), odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4x10(-6), odds ratio = 6) or ID (16%, p = 3.55x10(-12), odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33).
    PLoS Genet. 01/2011; 7(11):e1002334.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery. We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212. Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.
    PLoS ONE 01/2010; 5(12):e14456. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The completion of the human genome sequence has spurred investigation of the genetic contribution to substance dependence. In this article some of the recent scientific evidence for genetic determinants of opioid and cocaine dependence is reviewed. An electronic search of the medical literature was conducted to locate published studies relevant to the genetics of opioid and cocaine dependence. The collected information judged to be most pertinent is described and discussed. Genetic epidemiologic studies support a high degree of heritable vulnerability for both opioid and cocaine dependence. Polymorphisms in the genes coding for dopamine receptors and transporter, opioid receptors, endogenous opioid peptides, cannabinoid receptors, and serotonin receptors and transporter all appear to be associated with the phenotypic expression of this vulnerability once opioids or cocaine are consumed. Despite this initial progress, identification of specific genes and quantification of associated risk for the expression of each gene remain to be elucidated. While alteration of an individual's genome to change the phenotype seems remote, future interventions for treatment of opioid and cocaine dependence may include precise medications targeted to block the effects of proteins that have been identified through genetic research.
    Harvard Review of Psychiatry 07/2009; 13(4):218-32. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have established strong linkage evidence that supports mapping autosomal-dominant sensory/motor neuropathy with ataxia (SMNA) to chromosome 7q22-q32. SMNA is a rare neurological disorder whose phenotype encompasses both the central and the peripheral nervous system. In order to identify a gene responsible for SMNA, we have undertaken a comprehensive genomic evaluation of the region of linkage, including evaluation for repeat expansion and small deletions or duplications, capillary sequencing of candidate genes, and massively parallel sequencing of all coding exons. We excluded repeat expansion and small deletions or duplications as causative, and through microarray-based hybrid capture and massively parallel short-read sequencing, we identified a nonsynonymous variant in the human interferon-related developmental regulator gene 1 (IFRD1) as a disease-causing candidate. Sequence conservation, animal models, and protein structure evaluation support the involvement of IFRD1 in SMNA. Mutation analysis of IFRD1 in additional patients with similar phenotypes is needed for demonstration of causality and further evaluation of its importance in neurological diseases.
    The American Journal of Human Genetics 06/2009; 84(5):692-7. · 11.20 Impact Factor
  • Source
    Zoran Brkanac, Wendy H Raskind, Bryan H King
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism has the highest estimated heritability (>90%) among behaviorally defined neuropsychiatric disorders. Rapidly advancing genomic technologies and large international collaborations have increased our understanding of the molecular genetic causes of autism. Pharmacogenomic approaches are currently being applied in two single-gene disorders, fragile X syndrome and Rett syndrome, which capture many aspects of the autistic phenotype. This review describes the current state of the genetics of autism and suggests how to extend pharmacological principles pioneered in fragile X and Rett to the broader group of patients with autism.
    Personalized Medicine 11/2008; 5(6):599-607. · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the genetic architecture of dyslexia and identify the locations of genes involved, we performed linkage analyses in multigenerational families using a phonological memory phenotype--Nonword Repetition (NWR). A genome scan was first performed on 438 people from 51 families (DS-1) and linkage was assessed using variance components (VC), Bayesian oligogenic (BO), and parametric analyses. For replication, the genome scan and analyses were repeated on 693 people from 93 families (DS-2). For the combined set (DS-C), analyses were performed with all three methods in the regions that were identified in both samples. In DS-1, regions on chromosomes 4p, 6q, 12p, 17q, and 22q exceeded our initial threshold for linkage, with 17q providing a parametric LOD score of 3.2. Analysis with DS-2 confirmed the locations on chromosomes 4p and 12p. The strongest VC and BO signals in both samples were on chromosome 4p in DS-C, with a parametric multipoint LOD(max) of 2.36 for the 4p locus. Our linkage analyses of NWR in dyslexia provide suggestive and reproducible evidence for linkage to 4p12 and 12p in both samples, and significant evidence for linkage to 17q in one of the samples. These results warrant further studies of phonological memory and chromosomal regions identified here in other datasets.
    Behavior Genetics 08/2008; 38(5):462-75. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dyslexia is a common heterogeneous disorder with a significant genetic component. Multiple studies have replicated the evidence for linkage between variously defined phenotypes of dyslexia and chromosomal regions on 15q21 (DYX1) and 6p22.2 (DYX2). Based on association studies and the possibility for functional significance of several polymorphisms, candidate genes responsible for the observed linkage signal have been proposed-DYX1C1 for 15q21, and KIAA0319 and DCDC2 for 6p22.2. We investigated the evidence for contribution of these candidate genes to dyslexia in our sample of multigenerational families. Our previous quantitative linkage analyses in this dataset provided supportive evidence for linkage of dyslexia to the locus on chromosome 15, but not to the locus on chromosome 6. In the current study, we used probands from 191 families for a case control analysis, and proband-parent trios for family-based TDT analyses. The observation of weak evidence for transmission disequilibrium for one of the two studied polymorphisms in DYX1C1 suggests involvement of this gene in dyslexia in our dataset. We did not find evidence for the association of KIAA0319 or DCDC2 alleles to dyslexia in our sample. We observed a slight tendency for an intronic deletion in DCDC2 to be associated with worse performance on some quantitative measures of dyslexia in the probands in our sample, but not in their parents.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 07/2007; 144B(4):556-60. · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dyslexia is a common learning disability exhibited as a delay in acquiring reading skills despite adequate intelligence and instruction. Reading single real words (real-word reading, RWR) is especially impaired in many dyslexics. We performed a genome scan, using variance components (VC) linkage analysis and Bayesian Markov chain Monte Carlo (MCMC) joint segregation and linkage analysis, for three quantitative measures of RWR in 108 multigenerational families, with follow up of the strongest signals with parametric LOD score analyses. We used single-word reading efficiency (SWE) to assess speed and accuracy of RWR, and word identification (WID) to assess accuracy alone. Adjusting SWE for WID provided a third measure of RWR efficiency. All three methods of analysis identified a strong linkage signal for SWE on chromosome 13q. Based on multipoint analysis with 13 markers we obtained a MCMC intensity ratio (IR) of 53.2 (chromosome-wide P < 0.004), a VC LOD score of 2.29, and a parametric LOD score of 2.94, based on a quantitative-trait model from MCMC segregation analysis (SA). A weaker signal for SWE on chromosome 2q occurred in the same location as a significant linkage peak seen previously in a scan for phonological decoding. MCMC oligogenic SA identified three models of transmission for WID, which could be assigned to two distinct linkage peaks on chromosomes 12 and 15. Taken together, these results indicate a locus for efficiency and accuracy of RWR on chromosome 13, and a complex model for inheritance of RWR accuracy with loci on chromosomes 12 and 15.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 01/2006; 141B(1):15-27. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dyslexia is a common and complex developmental disorder manifested by unexpected difficulty in learning to read. Multiple different measures are used for diagnosis, and may reflect different biological pathways related to the disorder. Impaired phonological decoding (translation of written words without meaning cues into spoken words) is thought to be a core deficit. We present a genome scan of two continuous measures of phonological decoding ability: phonemic decoding efficiency (PDE) and word attack (WA). PDE measures both accuracy and speed of phonological decoding, whereas WA measures accuracy alone. Multipoint variance component linkage analyses (VC) and Markov chain Monte-Carlo (MCMC) multipoint joint linkage and segregation analyses were performed on 108 families. A strong signal was observed on chromosome 2 for PDE using both VC (LOD=2.65) and MCMC methods (intensity ratio (IR)=32.1). The IR is an estimate of the ratio of the posterior to prior probability of linkage in MCMC analysis. The chromosome 2 signal was not seen for WA. More detailed mapping with additional markers provided statistically significant evidence for linkage of PDE to chromosome 2, with VC-LOD=3.0 and IR=59.6 at D2S1399. Parametric analyses of PDE, using a model obtained by complex segregation analysis, provided a multipoint maximum LOD=2.89. The consistency of results from three analytic approaches provides strong evidence for a locus on chromosome 2 that influences speed but not accuracy of phonological decoding.
    Molecular Psychiatry 08/2005; 10(7):699-711. · 15.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dyslexia is a common, complex disorder, which is thought to have a genetic component. There have been numerous reports of linkage to several regions of the genome for dyslexia and continuous dyslexia-related phenotypes. We attempted to confirm linkage of continuous measures of (1) accuracy and efficiency of phonological decoding; and (2) accuracy of single word reading (WID) to regions on chromosomes 2p, 6p, 15q, and 18p, using 111 families with a total of 898 members. We used both single-marker and multipoint variance components linkage analysis and Markov Chain Monte Carlo (MCMC) joint segregation and linkage analysis for initial inspection of these regions. Positive results were followed with traditional parametric lod score analysis using a model estimated by MCMC segregation analysis. No positive linkage signals were found on chromosomes 2p, 6p, or 18p. Evidence of linkage of WID to chromosome 15q was found with both methods of analysis. The maximum single-marker parametric lod score of 2.34 was obtained at a distance of 3 cM from D15S143. Multipoint analyses localized the putative susceptibility gene to the interval between markers GATA50C03 and D15S143, which falls between a region implicated in a recent genome screen for attention-deficit/hyperactivity disorder, and DYX1C1, a candidate gene for dyslexia. This apparent multiplicity of linkage signals in the region for developmental disorders may be the result of errors in map and/or model specification obscuring the pleiotropic effect of a single gene on different phenotypes, or it may reflect the presence of multiple genes.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 12/2004; 131B(1):67-75. · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a nonepisodic autosomal dominant (AD) spinocerebellar ataxia (SCA) not caused by a nucleotide repeat expansion that is, to our knowledge, the first such SCA. The AD SCAs currently comprise a group of > or =16 genetically distinct neurodegenerative conditions, all characterized by progressive incoordination of gait and limbs and by speech and eye-movement disturbances. Six of the nine SCAs for which the genes are known result from CAG expansions that encode polyglutamine tracts. Noncoding CAG, CTG, and ATTCT expansions are responsible for three other SCAs. Approximately 30% of families with SCA do not have linkage to the known loci. We recently mapped the locus for an AD SCA in a family (AT08) to chromosome 19q13.4-qter. A particularly compelling candidate gene, PRKCG, encodes protein kinase C gamma (PKC gamma), a member of a family of serine/threonine kinases. The entire coding region of PRKCG was sequenced in an affected member of family AT08 and in a group of 39 unrelated patients with ataxia not attributable to trinucleotide expansions. Three different nonconservative missense mutations in highly conserved residues in C1, the cysteine-rich region of the protein, were found in family AT08, another familial case, and a sporadic case. The mutations cosegregated with disease in both families. Structural modeling predicts that two of these amino acid substitutions would severely abrogate the zinc-binding or phorbol ester-binding capabilities of the protein. Immunohistochemical studies on cerebellar tissue from an affected member of family AT08 demonstrated reduced staining for both PKC gamma and ataxin 1 in Purkinje cells, whereas staining for calbindin was preserved. These results strongly support a new mechanism for neuronal cell dysfunction and death in hereditary ataxias and suggest that there may be a common pathway for PKC gamma-related and polyglutamine-related neurodegeneration.
    The American Journal of Human Genetics 04/2003; 72(4):839-49. · 11.20 Impact Factor
  • Journal of the American Academy of Child & Adolescent Psychiatry. 01/2003; 42(1):121–122.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The autosomal dominant spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders. Although molecular genetic studies have so far implicated 16 loci in the etiology of these diseases, approximately 30% of families with SCAs remain unlinked. To report the location of a gene causing a "pure" autosomal dominant cerebellar ataxia in one family and to describe the clinical phenotype. We have identified a 4-generation American family of English and Dutch ethnicity with a pure cerebellar ataxia displaying an autosomal dominant pattern of inheritance. The disease typically has its onset in the third and fourth decades of life, shows no evidence of anticipation, progresses slowly, and does not appear to decrease life expectancy. Clinical DNA testing excluded SCA1, 2, 3, 6, 7, and 8. A genome-wide linkage analysis at a 10 centimorgan (cM) level was performed with samples from 26 family members (11 affected, 10 clinically unaffected at risk, and 5 spouses). Assuming 90% penetrance, we found suggestive evidence of linkage to chromosome 19, with a lod score of 2.49 for D19S571. More detailed mapping in this region provided a maximum 2-point lod score of 2.57 at theta = 0 for D19S254 and a maximum multipoint lod score of 4.72 at D19S926. By haplotype construction a 22-cM critical region from D19S601 to the q telomere was defined. We have mapped a gene for an autosomal dominant SCA to chromosome 19q13.4-qter in one family. The critical region overlaps with the locus for SCA14, a disease described in a single Japanese family and characterized by axial myoclonus. Myoclonus was not seen in the family we studied, but it remains possible that the 2 disorders are allelic variants.
    JAMA Neurology 09/2002; 59(8):1291-5. · 7.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The autosomal dominant (AD) spinocerebellar ataxias (SCAs) and hereditary sensory neuropathies (HSN) are heterogeneous disorders characterized by variable clinical, electrophysiological, and neuropathological profiles. The SCAs are clinically characterized by slowly progressive incoordination of gait often associated with poor coordination of hands, speech, and eyes. Peripheral neuropathy is not a frequent part of the SCA syndrome. In contrast, the HSNs are primarily characterized by progressive sensory loss. There is substantial clinical overlap between the various SCAs and the various HSNs, and they often cannot be differentiated on the basis of clinical or neuro-imaging studies. We have identified a five-generation American family of Irish ancestry with a unique neurological disorder displaying an AD pattern of inheritance. There was variable expressivity and severity of symptoms including sensory loss, ataxia, pyramidal tract signs, and muscle weakness. Nerve conduction studies were consistent with a sensory axonal neuropathy. Muscle biopsy revealed neurogenic atrophy and brain MRI showed mild cerebellar atrophy. To identify the responsible locus we pursued a whole genome linkage analysis. After analyzing 114 markers, linkage to D7S486 was detected with a two point LOD score of 4.79 at theta = 0.00. Evaluation of additional markers in the region provided a maximum LOD score of 6.36 at theta = 0.00 for marker D7S2554. Haplotype analysis delimited an approximately 14-cM region at 7q22-q32 between markers D7S2418 and D7S1804 cosegregating with the disease. Because this disorder does not easily fall into either the SCA or HSN categories, it is designated sensory/motor neuropathy with ataxia (SMNA).
    American Journal of Medical Genetics 06/2002; 114(4):450-7.