Anne-Marie Heegaard

University of Copenhagen, København, Capital Region, Denmark

Are you Anne-Marie Heegaard?

Claim your profile

Publications (24)106.98 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pain is a common and highly debilitating complication for cancer patients significantly compromising their quality of life. Cancer-induced bone pain involves a complex interplay of multiple mechanisms including both inflammatory and neuropathic processes and also some unique changes. Strong opioids are a mainstay of treatments but side effects are problematic and can compromise optimal pain control. Tapentadol is a novel dual-action drug, both stimulating inhibitory μ-opioid receptors (MOR) and mediating noradrenaline reuptake inhibition (NRI) leading to activation of the inhibitory α-2 adrenoceptor. It has been demonstrated to treat effectively both acute and chronic pain. We here demonstrate the efficacy in a model of cancer-induced bone pain.
    European journal of pain (London, England) 06/2014; · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nav1.7, a peripheral neuron voltage-gated sodium channel, is essential for pain and olfaction in mice and humans. We examined the role of Nav1.7 as well as Nav1.3, Nav1.8, and Nav1.9 in different mouse models of chronic pain. Constriction-injury-dependent neuropathic pain is abolished when Nav1.7 is deleted in sensory neurons, unlike nerve-transection-related pain, which requires the deletion of Nav1.7 in sensory and sympathetic neurons for pain relief. Sympathetic sprouting that develops in parallel with nerve-transection pain depends on the presence of Nav1.7 in sympathetic neurons. Mechanical and cold allodynia required distinct sets of neurons and different repertoires of sodium channels depending on the nerve injury model. Surprisingly, pain induced by the chemotherapeutic agent oxaliplatin and cancer-induced bone pain do not require the presence of Nav1.7 sodium channels or Nav1.8-positive nociceptors. Thus, similar pain phenotypes arise through distinct cellular and molecular mechanisms. Therefore, rational analgesic drug therapy requires patient stratification in terms of mechanisms and not just phenotype.
    Cell Reports 01/2014; · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pain caused by bone metastases has a severe impact on the quality of life for many patients with cancer. Good translational in vivo models are required to understand the molecular mechanism and develop better treatment. In the current study we evaluated the influence of sex differences on the progression of cancer-induced bone pain. 4T1-luc2 mammary cancer cells were introduced into the femoral cavity of female and male BALB/cJ mice. Bioluminescence tumor signal, pain-related behavior and bone degradation were monitored for 14 days. Female mice demonstrated a significantly greater bioluminescence signal on day 2 compared to male mice and, in addition, a significant earlier onset of pain-related behavior was observed in the females. No sex difference was observed for bone degradation. Finally, a strong correlation between pain-related behavior and bone degradation was observed for both sexes. Although differences were observed between the sexes, these were minor and did not affect the overall progression of the pain state.
    Anticancer research 05/2013; 33(5):1963-9. · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: GTP cyclohydrolase 1 (GTP-CH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4), encoded by the GCH1 gene, has been implicated in the development and maintenance of inflammatory pain in rats. In humans, homozygous carriers of a "pain-protective" (PP) haplotype of the GCH1 gene have been identified exhibiting lower pain sensitivity, but only following pain sensitisation. Ex vivo, the PP GCH1 haplotype is associated with decreased induction of GCH1 after stimulation, whereas the baseline BH4 production is not affected. Contrary, loss of function mutations in the GCH1 gene results in decreased basal GCH1 expression, and is associated with DOPA-responsive dystonia (DRD). So far it is unknown if such mutations affect acute and inflammatory pain. RESULTS: In the current study, we examined the involvement of the GCH1 gene in pain models using the hyperphenylalaninemia 1 (hph-1) mouse, a genetic model for DRD, with only 10% basal GTP-CH1 activity compared to wild type mice. The study included assays for determination of acute nociception as well as models for pain after sensitisation. Pain behavioural analysis of the hph-1 mice showed reduced pain-like responses following intraplantar injection of CFA, formalin and capsaicin; whereas decreased basal level of GTP-CH1 activity had no influence in naive hph-1 mice on acute mechanical and heat pain thresholds. Moreover, the hph-1 mice showed no signs of motor impairment or dystonia-like symptoms. CONCLUSIONS: In this study, we demonstrate novel evidence that genetic mutations in the GCH1 gene modulate pain-like hypersensitivity. Together, the present data suggest that BH4 is not important for basal heat and mechanical pain, but they support the hypothesis that BH4 plays a role in inflammation-induced hypersensitivity. Our studies suggest that the BH4 pathway could be a therapeutic target for the treatment of inflammatory pain conditions. Moreover, the hph-1 mice provide a valid model to study the consequence of congenital deficiency of GCH1 in painful conditions.
    Molecular Pain 02/2013; 9(1):5. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purinergic P2X3 and P2X2/3 receptors are in the peripheral nervous system almost exclusively confined to afferent sensory neurons, where they are found both at peripheral and central synapses. The P2X3 receptor is implicated in both neuropathic and inflammatory pain. However, the role of the P2X3 receptor in chronic cancer-induced bone pain is less known. Here we investigated the effect of systemic acute and chronic administration of the selective P2X3, P2X2/3 receptor antagonist (5-[[[(3-Phenoxyphenyl)methyl][(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl]-1,2,4-benzenetricarboxylic acid sodium salt hydrate) (A-317491) in a murine model of cancer-induced bone pain. Chronic administration of A-317491 (30 μmol/kgs.c., b.i.d.) resulted in a transient attenuation of pain related behaviours in the early stage of the bone cancer model, but had no effect in the late and more progressed stage of bone cancer. Also, acute administration of A-317491 (100 μmol/kgs.c.) had no effect in the progressed stage of the bone cancer pain model. Thus, systemically administered A-317491 did not demonstrate a robust effect in the present mouse model of cancer-induced bone pain.
    European journal of pharmacology 05/2012; 688(1-3):27-34. · 2.59 Impact Factor
  • Source
    Sarah Falk, Maria Uldall, Anne-Marie Heegaard
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer-induced bone pain severely compromises the quality of life of many patients suffering from bone metastasis, as current therapies leave some patients with inadequate pain relief. The recent development of specific animal models has increased the understanding of the molecular and cellular mechanisms underlying cancer-induced bone pain including the involvement of ATP and the purinergic receptors in the progression of the pain state. In nociception, ATP acts as an extracellular messenger to transmit sensory information both at the peripheral site of tissue damage and in the spinal cord. Several of the purinergic receptors have been shown to be important for the development and maintenance of neuropathic and inflammatory pain, and studies have demonstrated the importance of both peripheral and central mechanisms. We here provide an overview of the current literature on the role of purinergic receptors in cancer-induced bone pain with emphasis on some of the difficulties related to studying this complex pain state.
    Journal of osteoporosis. 01/2012; 2012:758181.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purinergic P2X7 receptor is implicated in both neuropathic and inflammatory pain, and has been suggested as a possible target in pain treatment. However, the specific role of the P2X7 receptor in bone cancer pain is unknown. We demonstrated that BALB/cJ P2X7 receptor knockout (P2X7R KO) mice were susceptible to bone cancer pain and moreover had an earlier onset of pain-related behaviours compared with cancer-bearing, wild-type mice. Furthermore, acute treatment with the selective P2X7 receptor antagonist, A-438079, failed to alleviate pain-related behaviours in models of bone cancer pain with and without astrocyte activation (BALB/cJ or C3H mice inoculated with 4T1 mammary cancer cells or NCTC 2472 osteosarcoma cells, respectively), suggesting that astrocytic P2X7 receptors play a negligible role in bone cancer pain. The results support the hypothesis that bone cancer pain is a separate pain state compared with those of neuropathic and inflammatory pain. However, the recent discovery of a P2X7 receptor splice variant expressed in the knockout mice used for this study complicates the interpretation of the results. The P2X7 splice variant receptor was detected in the spinal cord but not in osteoclasts of the P2X7R KO mouse. Further experiments are needed to elucidate the exact role of the P2X7 receptors in bone cancer pain.
    Pain 05/2011; 152(8):1766-76. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of colorectal anastomotic leakage. Tumor necrosis factor-α (TNF-α) induces MMPs and may influence anastomosis repair. We assessed the efficacies of the nonselective hydroxamate MMP inhibitor GM6001, the selective hydroxamate MMP inhibitor AG3340 and a TNF-α antagonist with respect to anastomotic breaking strength of left-sided colon anastomoses in male Sprague-Dawley rats. Systemic GM6001 treatment effectively blocked MMP activity and maintained the initial breaking strength day 0 of the anastomoses when administered subcutaneously as daily depositions (100 mg/kg) or continuously (10 mg/kg/day). In contrast, the anastomotic biomechanic strength was lowered by 55% (p < 0.001) in vehicle-treated rats on postoperative day 3. GM6001 treatment increased breaking strength by 88% (p < 0.0005) compared with vehicle-treated rats day 3 and reduced (p = 0.003) the occurrence of spontaneous anastomotic dehiscence. Histologically, the anastomotic wound was narrower (p < 0.05) in the longitudinal direction in GM6001-treated animals whereas GM6001 had no significant effect on inflammatory cell infiltration or epithelialization. AG3340 (10 mg/kg) increased (p < 0.012) breaking strength by 47% compared with vehicle on day 3 but did not significantly prevent the reduction of the initial breaking strength on day 0. Although the increased TNF-α levels in the wound were attenuated, the anastomotic breaking strength was not improved (p = 0.62) by the TNF-α (10 mg/kg) inhibitor given systemically. Pharmacological nonselective MMP inhibition ought to be explored as a prophylactic regimen to reduce anastomotic complications following colorectal resection. The involvement of TNF-α was insignificant in anastomotic wound healing in an experimental model.
    International Journal of Colorectal Disease 03/2011; 26(3):329-37. · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate, breast and lung cancers readily develop bone metastases which lead to fractures, hypercalcemia and pain. Malignant growth in the bones depends on osteoclast-mediated bone resorption and in this regard bisphosphonate compounds, which have high-bone affinity and inhibit osteoclast activity, have been found to alleviate bone cancer symptoms. In this study, the bisphosphonate risedronate and its phosphonocarboxylate derivative NE-10790 was tested in a murine bone cancer pain model. Risedronate decreased bone cancer-related bone destruction and pain-related behavior and decreased the spinal expression of glial fibrillary acidic protein, whereas NE-10790 had no effect on these parameters. Furthermore, risedronate but not NE-10790 induced dose-dependent toxicity in NCTC-2472 cells in vitro. Furthermore, the direct toxic effect of risedronate on tumor cells observed in vitro opens the possibility that a direct toxic effect on tumor cells may also be present in vivo and be related to the efficacy of bisphosphonate compounds. In conclusion, these results suggest that risedronate treatment may lead to an increased life quality, in patient suffering from bone cancer, in terms of decreased osteolysis and pain, and merits further study.
    International Journal of Cancer 04/2009; 125(5):1177-85. · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pain due to bone malignancies is one of the most difficult types of cancer pain to fully control and may further decrease the patients' quality of life. Animal models of chronic pain conditions resulting from peripheral inflammatory reactions or nerve injuries are responsive to treatment with cannabinoid agonists. However, the use of cannabinoid agonists in humans may be hampered by CNS related side effects and development of tolerance. In the present study, we investigated the effect of repeated low dose administration of the synthetic cannabinoid agonist WIN 55,212-2 on bone cancer pain and neuropathic pain in mice. In addition, we investigated the development of CNS related side effects and tolerance. We found that 0.5 mg/kg/day for 18 days reduced pain related behavior and expression of spinal glial fibrillary acidic protein in the bone cancer pain model but not in the neuropathic pain model. Furthermore, this treatment strategy was not found to induce measurable CNS related side effects or tolerance. Cancer cell viability assays and bone volume fraction assessed by micro computed tomography (microCT) demonstrated that these effects were not due to changes in cancer progression. The difference in WIN 55,212-2 efficacy between the bone cancer and neuropathic pain models may reflect the different pain generating mechanisms, which may be utilized in designing new therapeutic drugs.
    Pharmacology Biochemistry and Behavior 07/2008; 91(1):38-46. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of spinal cord microglia and astrocytes is a common phenomenon in nerve injury pain models and is thought to exacerbate pain perception. Following a nerve injury, a transient increase in the presence of microglia takes place while the increased numbers of astrocytes stay elevated for an extended period of time. It has been proposed that activated microglia are crucial for the development of neuropathic pain and that they lead to activation of astrocytes which then play a role in maintaining the long term pathological pain sensation. In the present report, we examined the time course of spinal cord glial activation in three different murine pain models to investigate if microglial activation is a general prerequisite for astrocyte activation in pain models. We found that two different types of cancer induced pain resulted in severe spinal astrogliosis without activation of microglia. In contrast, sciatic nerve injury led to a transient activation of microglia and sustained astrogliosis. These results show that development of hypersensitivity and astrocyte activation in pain models can take place independent of microglial activation.
    European journal of pain (London, England) 06/2008; 13(2):138-45. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After resection and repair of the intestines, tissue degradation leads to weakening of the repair site and risk of postoperative leakage. Matrix metalloproteinases (MMPs) are thought to be responsible for collagenolysis in the direct vicinity of surgical sutures in many tissues. Several experimental studies show that MMP inhibitors administered systemically alleviate postoperative weakening of intestinal anastomoses. We hypothesised that local delivery of MMP inhibitors would achieve a similar effect. Implementing a novel method for the coating of biomaterials, we coated sutures with a cross-linked fibrinogen film and bound the MMP inhibitor doxycycline into this film. The sutures were then used in a standard rat model for evaluating mechanical properties of colonic anastomoses 3 days after surgery. The breaking strength of the anastomoses on the critical third day after operation was 17% higher with doxycycline-coated sutures compared to controls (P = 0.026). Energy uptake at failure was enhanced by 20% (P = 0.047). Drug delivery by means of MMP-inhibitor-coated sutures appears to improve tissue integrity during anastomotic repair and may reduce postoperative complications.
    International Journal of Colorectal Disease 04/2008; 23(3):271-6. · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the majority of cases, the cause of spontaneous aortic dissection and rupture is unknown. An inherited risk is associated with Marfan syndrome, Ehlers-Danlos syndrome type IV, and loci mapped to diverse autosomal chromosomes. Analysis of pedigrees however has indicated that it may be also inherited as an X-linked trait. The biglycan gene, found on chromosome X in humans and mice, encodes a small leucine-rich proteoglycan involved in the integrity of the extracellular matrix. A vascular phenotype has never been described in mice deficient in the gene for small leucine-rich proteoglycans. In the breeding of BALB/cA mice homozygous for a null mutation of the biglycan gene, we observed that 50% of biglycan-deficient male mice died suddenly within the first 3 months of life. Necropsies revealed a major hemorrhage in the thoracic or abdominal cavity, and histology showed aortic rupture that involved an intimal and medial tear as well as dissection between the media and adventitia. By transmission electron microscopy and biomechanical testing, the aortas of biglycan-deficient mice showed structural abnormalities of collagen fibrils and reduced tensile strength. Similar collagen fibril changes were observed in male as well as in female biglycan-deficient mice, which implies a role of additional determinants such as gender-related response to stress in the development of this vascular catastrophe only in male mice. The spontaneous death of biglycan-deficient male mice from aortic rupture implicates biglycan as essential for the structural and functional integrity of the aortic wall and suggests a potential role of biglycan gene defects in the pathogenesis of aortic dissection and rupture in humans.
    Circulation 06/2007; 115(21):2731-8. · 15.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone mass is maintained by a fine balance between bone formation by osteoblasts and bone resorption by osteoclasts. Although osteoblasts and osteoclasts have different developmental origins, it is generally believed that the differentiation, function, and survival of osteoclasts are regulated by osteogenic cells. We have previously shown that the extracellular matrix protein, biglycan (Bgn), plays an important role in the differentiation of osteoblast precursors. In this paper, we showed that Bgn is involved in regulating osteoclast differentiation through its effect on osteoblasts and their precursors using both in vivo and in vitro experiments. The in vivo osteolysis experiment showed that LPS (lipopolisaccharide)-induced osteolysis occurred more rapidly and extensively in bgn deficient mice compared to wild type (WT) mice. To further understand the mechanism of action, we determined the effects of Bgn on 1alpha, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3))-induced osteoclast differentiation and bone resorption in an co-culture of calvariae-derived pre-osteoblasts and osteoclast precursors derived from spleen or bone marrow. Time course and dose response experiments showed that tartrate-resistant acid phosphatase-positive multinuclear cells appeared earlier and more extensively in the co-cultures containing calvarial cells from bgn deficient mice than WT mice, regardless of the genotype of osteoclast precursors. The osteoblast abnormality that stimulated osteoclast formation appeared to be independent of the differential production of soluble RANKL and OPG and, instead, due to a decrease in osteoblast maturation accompanied by increase in osteoblastic proliferation. In addition to the imbalance between differentiation and proliferation, there was a differential decrease in secretory leukocyte protease inhibitor (slpi) in bgn deficient osteoblasts treated with 1,25-(OH)(2)D(3). These findings point to a novel molecular factor made by osteoblasts that could potentially be involved in LPS-induced osteolysis.
    Bone 07/2006; 38(6):778-86. · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small Leucine-Rich Proteoglyans (SLRPs) are major skeletal extracellular matrix (ECM) components that comprise a family of 13 members containing repeats of a leucine-rich motif. To examine SLRP function, we generated mice deficient in one or more member and analyzed them at the tissue, cell and molecular levels. This review outlines the novel research findings uncovered using these new animal models.
    Journal of musculoskeletal & neuronal interactions 01/2006; 6(4):364-5. · 2.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with defective osteoclastic acidification have increased numbers of osteoclasts, with decreased resorption, but bone formation that remains unchanged. We demonstrate that osteoclast survival is increased when acidification is impaired, and that impairment of acidification results in inhibition of bone resorption without inhibition of bone formation. We investigated the role of acidification in human osteoclastic resorption and life span in vitro using inhibitors of chloride channels (NS5818/NS3696), the proton pump (bafilomycin) and cathepsin K. We found that bafilomycin and NS5818 dose dependently inhibited acidification of the osteoclastic resorption compartment and bone resorption. Inhibition of bone resorption by inhibition of acidification, but not cathepsin K inhibition, augmented osteoclast survival, which resulted in a 150 to 300% increase in osteoclasts compared to controls. We investigated the effect of inhibition of osteoclastic acidification in vivo by using the rat ovariectomy model with twice daily oral dosing of NS3696 at 50 mg/kg for 6 weeks. We observed a 60% decrease in resorption (DPYR), increased tartrate-resistant acid phosphatase levels, and no effect on bone formation evaluated by osteocalcin. We speculate that attenuated acidification inhibits dissolution of the inorganic phase of bone and results in an increased number of nonresorbing osteoclasts that are responsible for the coupling to normal bone formation. Thus, we suggest that acidification is essential for normal bone remodeling and that attenuated acidification leads to uncoupling with decreased bone resorption and unaffected bone formation.
    American Journal Of Pathology 03/2005; 166(2):467-76. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biglycan is a small leucine-rich proteoglycan which is localized in the extracellular matrix of bone and other specialized connective tissues. Both biglycan mRNA and protein are up-regulated by transforming growth factor-beta(1) (TGF-beta(1)) and biglycan appears to influence TGF-beta(1) activity. In this study, we have investigated the mechanism by which TGF-beta(1), TGF-beta(2) and TGF-beta(3) stimulate biglycan mRNA expression in the osteoblastic cell line MG-63. The cells were transfected with a series of deletional human biglycan promoter constructs and a region in the biglycan 5' DNA was found to respond to TGF-beta(1) with increased transcriptional activity in a dose-dependent manner. Also TGF-beta(2) and TGF-beta(3), two structurally highly related TGF-beta isoforms stimulated biglycan transcription. A TGF-beta responsive region was identified within the first 218 bp of the human biglycan promoter upstream from the transcriptional start site, which contained several binding sites for the transcription factor Sp1. Electrophoretic mobility shift assays with nuclear extracts from MG-63 cells showed binding of both Sp1 and Sp3 to a site at -216 to -208. When the biglycan promoter construct was co-transfected with Sp1 and Sp3 expression vectors in Sp1-deficient Drosophila Schneider-2 cells, Sp1 induced the transcriptional activity of biglycan. Addition of Sp3 augmented the effect of Sp1 on biglycan gene expression. Induction of biglycan mRNA expression in response to TGF-beta in MG-63 cells was abrogated by mithramycin, an inhibitor of Sp1 binding to GC-rich DNA sequences. A mutation in the Sp1 site at -216 to -208 within the -218 biglycan promoter construct substantially diminished the transcriptional up-regulation by TGF-beta(1). Taken together this data shows for the first time that TGF-beta(1) stimulation of human biglycan mRNA expression relies on increased transcription of the biglycan gene, and is mediated by members of the Sp1 family of transcription factors.
    Journal of Cellular Biochemistry 11/2004; 93(3):463-75. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone formation. This study indicates that chloride channel inhibitors are highly promising for treatment of osteoporosis. The chloride channel inhibitor, NS3736, blocked osteoclastic acidification and resorption in vitro with an IC50 value of 30 microM. When tested in the rat ovariectomy model for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. Analysis of chloride channels in human osteoclasts revealed that ClC-7 and CLIC1 were highly expressed. Furthermore, by electrophysiology, we detected a volume-activated anion channel on human osteoclasts. Screening 50 different human tissues showed a broad expression for CLIC1 and a restricted immunoreactivity for ClC-7, appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. In conclusion, we show for the first time that chloride channel inhibitors can be used for prevention of ovariectomy-induced bone loss without impeding bone formation. We speculate that the coupling of bone resorption to bone formation is linked to the acidification of the resorption lacunae, thereby enabling compounds that directly interfere with this process to be able to positive uncouple this process resulting in a net bone gain.
    Journal of Bone and Mineral Research 08/2004; 19(7):1144-53. · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to assess the effect of ovariectomy on cartilage turnover and degradation, to evaluate whether ovariectomized (OVX) rats could form an experimental model of postmenopausal osteoarthritis. The effect of ovariectomy on cartilage was studied using two cohorts of female Sprague-Dawley rats, aged 5 and 7 months. In a third cohort, the effect of exogenous estrogen and a selective estrogen receptor modulator was analyzed. Knee joints were assessed by histological analysis of the articular cartilage after 9 weeks. Cartilage turnover was measured in urine by an immunoassay specific for collagen type II degradation products (CTX-II), and bone resorption was quantified in serum using an assay for bone collagen type I fragments (CTX-I). Surface erosion in the cartilage of the knee was more severe in OVX rats than in sham-operated animals, particularly in the 7-month-old cohort (P = 0.008). Ovariectomy also significant increased CTX-I and CTX-II. Both the absolute levels of CTX-II and the relative changes from baseline seen at week 4 correlated strongly with the severity of cartilage surface erosion at termination (r = 0.74, P < 0.01). Both estrogen and the selective estrogen receptor modulator inhibited the ovariectomy-induced acceleration of cartilage and bone turnover and significantly suppressed cartilage degradation and erosion seen in vehicle-treated OVX rats. The study indicates that estrogen deficiency accelerates cartilage turnover and increases cartilage surface erosion. OVX rats provide a useful experimental model for the evaluation of the chondroprotective effects of estrogens and estrogen-like substances and the model may be an in vivo representation of osteoarthritis in postmenopausal women.
    Arthritis research & therapy 01/2004; 6(2):R169-80. · 4.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biglycan is a matrix proteoglycan with a possible role in bone turnover. In a 4-week study with sham-operated or OVX biglycan-deficient or wildtype mice, we show that biglycan-deficient mice are resistant to OVX-induced trabecular bone loss and that there is a gender difference in the response to biglycan deficiency. Biglycan (bgn) is a small extracellular matrix proteoglycan enriched in skeletal tissues, and biglycan-deficient male mice have decreased trabecular bone mass and bone strength. The purpose of this study was to investigate the bone phenotype of the biglycan-deficient female mice and to investigate the effect of estrogen depletion by ovariectomy (OVX). OVX or sham operations were performed on 21-week-old mice that were divided into four groups: wt sham (n = 7), wt OVX (n = 9), bgn-deficient sham (n = 10) and bgn-deficient OVX (n = 10). The mice were killed 4 weeks after surgery. Bone mass and bone turnover were analyzed by peripheral quantitative computed tomography (pQCT), biochemical markers, and histomorphometry. In contrast to the male mice, there were only few effects of bgn deficiency on bone metabolism in female mice, showing a clear gender difference. However, when stressed by OVX, the female bgn knockout (KO) mice were resistant to the OVX-induced trabecular bone loss. The wt mice showed a decrease in trabecular bone mineral density by pQCT measurements, a decrease in trabecular bone volume (BV/TV), and an increase in mineral apposition rate. In contrast, no significant changes were detected in bgn KO mice after OVX. In addition, analysis of the bone resorption marker deoxypyridinoline showed no significant increase in the bgn KO OVX mice compared with bgn KO sham mice. Measurements of serum osteoprotegerin (OPG) and RANKL revealed increased levels of OPG and decreased levels of RANKL in the bgn KO mice compared with wt mice. In conclusion, the bgn deficiency protects against increased trabecular bone turnover and bone loss in response to estrogen depletion, supporting the concept that bgn has dual roles in bone, where it may modulate both formation and resorption ultimately influencing the bone turnover process.
    Journal of Bone and Mineral Research 01/2004; 18(12):2152-8. · 6.13 Impact Factor

Publication Stats

695 Citations
106.98 Total Impact Points

Institutions

  • 2007–2014
    • University of Copenhagen
      • • Department of Drug Design and Pharmacology
      • • Department of Pharmacology and Pharmacotherapy
      København, Capital Region, Denmark
  • 2011
    • Nordic Bioscience
      København, Capital Region, Denmark
  • 1997–2000
    • Center for Clinical and Basic Research
      København, Capital Region, Denmark