E Richet

Paris Diderot University, Lutetia Parisorum, Île-de-France, France

Are you E Richet?

Claim your profile

Publications (25)162.75 Total impact

  • Peng Liu, Olivier Danot, Evelyne Richet
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal transduction ATPases with numerous domains (STAND) are widespread proteins, whose activation involves inducer-dependent conversion of resting ADP-bound monomers into active ATP-bound multimers. This process notably comprises opening of the nucleotide-binding oligomerization domain (NOD), nucleotide exchange and NOD-mediated multimerization. How inducer binding to the sensor domain, whose structure is not conserved throughout the STAND family, causes protein activation remains unclear. We used MalT, an Escherichia coli transcription factor, as a STAND model system, to address this question by dissecting the signaling pathway in vitro.We have found that inducer binding to the sensor is the first step of the activation pathway. It both triggers opening of the NOD and makes the MalT multimer competent for binding promoter MalT sites via its DNA-binding domains. Based on available data, we proposed that inducer trigger of NOD opening is a conserved STAND feature, irrespective of the sensor structure. As discussed, an additional role for the inducer, as found for MalT, might pertain to other types of STANDs.
    Molecular Microbiology 10/2013; · 4.96 Impact Factor
  • Evelyne Richet, Amy L Davidson, Nicolas Joly
    [Show abstract] [Hide abstract]
    ABSTRACT: MalK, the cytoplasmic component of the maltose ABC transporter from Escherichia coli is known to control negatively the activity of MalT, the activator of the maltose regulon, through complex formation. Here we further investigate this regulatory process by monitoring MalT activity and performing fluorescence microscopy analyses under various conditions. We establish that, under physiological conditions, the molecular entity that interacts with MalT is not free MalK, but the maltose transporter, MalFGK(2) , which sequesters MalT to the membrane. Furthermore, we provide compelling evidence that the transporter's ability to bind MalT is not constitutive, but strongly diminished when MalFGK(2) is engaged in sugar transport. Notably, the outward-facing transporter, i.e. the catalytic intermediate, is ineffective in inhibiting MalT compared to the inward-facing state, i.e. the resting form. Analyses of available genetic and structural data suggest how the interaction between one inactive MalT molecule and MalFGK(2) would be sensitive to the transporter state, thereby allowing MalT release upon maltose entrance. A related mechanism may underpin signalling by other ABC transporters.
    Molecular Microbiology 06/2012; 85(4):632-47. · 4.96 Impact Factor
  • Source
    Emélie Marquenet, Evelyne Richet
    [Show abstract] [Hide abstract]
    ABSTRACT: The signal transduction ATPases with numerous domains (STAND) are sophisticated signaling proteins that are related to AAA+ proteins and control various biological processes, including apoptosis, gene expression, and innate immunity. They function as tightly regulated switches, with the off and on positions corresponding to an ADP-bound, monomeric form and an ATP-bound, multimeric form, respectively. Protein activation is triggered by inducer binding to the sensor domain. ATP hydrolysis by the nucleotide-binding oligomerization domain (NOD) ensures the generation of the ADP-bound form. Here, we use MalT, an Escherichia coli transcription activator, as a model system to identify STAND conserved motifs involved in ATP hydrolysis besides the catalytic acidic residue. Alanine substitution of the conserved polar residue (H131) that is located two residues downstream from the catalytic residue (D129) blocks ATP hydrolysis and traps MalT in an active, ATP-bound, multimeric form. This polar residue is also conserved in AAA+. Based on AAA+ X-ray structures, we proposed that it is responsible for the proper positioning of the catalytic and the sensor I residues for the hydrolytic attack. Alanine substitution of the putative STAND sensor I (R160) abolished MalT activity. Substitutions of R171 impaired both ATP hydrolysis and multimerization, which is consistent with an arginine finger function and provides further evidence that ATP hydrolysis is primarily catalyzed by MalT multimers.
    Journal of bacteriology 10/2010; 192(19):5181-91. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The signal transduction ATPases with numerous domains (STAND) represent a newly recognized class of widespread, sophisticated ATPases that are related to the AAA+ proteins and that function as signaling hubs. These proteins control diverse biological processes in bacteria and eukaryotes, including gene expression, apoptosis, and innate immunity responses. They function as tightly regulated switches, with the off and on positions corresponding to a long-lived monomeric, ADP-bound form and a multimeric, ATP-bound form, respectively. Inducer binding to the sensor domain activates the protein by promoting ADP for ATP exchange, probably through removal of an intramolecular inhibitory interaction, whereas ATP hydrolysis turns off the protein. One key component of the switch is a three-domain module carrying the ATPase activity (nucleotide-binding oligomerization domain [NOD]). Analysis of the atomic structures of four crystallized nucleotide-bound NOD modules provides an unprecedented insight into the NOD conformational changes underlying the activation process.
    Structure 03/2009; 17(2):172-82. · 5.99 Impact Factor
  • Emélie Marquenet, Evelyne Richet
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of nucleotide hydrolysis in signaling by signal transduction ATPases with numerous domains (STAND) is poorly understood. Here we use MalT, the transcription activator of the Escherichia coli maltose regulon, as a model system to address this question. We have constructed the MalT-D129A variant that binds ATP but does not hydrolyze it and have characterized it in vivo and in vitro. ATP hydrolysis is not essential for transcription activation but is crucial in controlling MalT activity. MalT cycles between an ADP-bound, resting form that is the target of negative effectors and an ATP-bound, active form, which oligomerizes. Conversion to the active form involves nucleotide exchange and depends on maltotriose binding, whereas resetting to the inactive state relies on ATP hydrolysis, which ensues MalT multimerization. Such a controlled binary switch most likely applies to the other STAND NTPases, including Apaf-1 and the human innate immunity proteins NOD2, and CIAS1.
    Molecular Cell 11/2007; 28(2):187-99. · 15.28 Impact Factor
  • Source
    Evelyne Richet, Nicolas Joly, Olivier Danot
    [Show abstract] [Hide abstract]
    ABSTRACT: MalT, the dedicated transcriptional activator of the maltose regulon in Escherichia coli, is subject to multiple controls. Maltotriose, the inducer, promotes MalT self-association, a critical step in promoter binding, whereas three proteins acting as negative allosteric effectors (MalK, the ABC-component of the maltodextrin transporter, MalY, and Aes) antagonize maltotriose binding. All of these regulatory signals are integrated by a novel signal transduction module that comprises three out of the four MalT structural domains: DT1, the ATP-binding domain that contains determinants recognized by the negative effectors, DT2, and DT3, the maltotriose-binding domain. For a better insight into the role of DT3 in signal integration, we PCR mutagenized the DT3-encoding region and screened for gain of function mutations in a malK+ strain in the absence of repression by MalY or Aes. Most of the mutations isolated alter one of seven residues that are located in DT3 helices 10 and 11, or in the turn between them and delineate a surface-exposed motif. In vivo and in vitro analyses revealed that the substitutions altering the so-called H10/H11 motif do not affect the ability of MalT to activate transcription or its sensitivity to MalY and Aes, but dramatically decrease its sensitivity to MalK. We propose that MalT/MalK interaction might involve two distinct contact sites on each partner. These sites would be located in DT1 and DT3 of MalT, and in the nucleotide-binding domain and the regulatory domain of MalK. Such a two-point interaction model would explain how the regulatory activity of MalK might be coupled to transport.
    Journal of Molecular Biology 04/2005; 347(1):1-10. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MalT, the dedicated transcriptional activator of the maltose regulon in Escherichia coli, is the prototype for a family of large (approximately 100 kDa) transcriptional activators. MalT self-association plays a key role in recognition of the target promoters, which contain several MalT sites that are cooperatively bound by the activator. The unliganded form of MalT is monomeric. The protein self-associates only in the presence of both ATP (or AMP-PNP, a non-hydrolysable analog of ATP) and maltotriose, the inducer. Here, we report cryo-electron microscopy analyses of MalT multimeric forms. We show that, in the presence of maltotriose and AMP-PNP, MalT associates into novel, polydisperse, curved homopolymers. The building block, corresponding to a MalT monomer, comprises an outer globular domain connected by a peduncle to an inner domain that mediates self-association. Image analyses highlight the significant conformational flexibility of these polymeric forms. In the presence of a DNA fragment containing a MalT-controlled promoter, malPp500, MalT forms homopolymers with a much smaller radius of curvature and a different conformation. We propose that MalT binding to the target promoters involves the assembly of a MalT homo-oligomer that is governed by the array of MalT sites present.
    Journal of Molecular Biology 12/2004; 343(5):1159-69. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, has long been known to control negatively the activity of MalT, a transcriptional activator dedicated to the maltose regulon. By using a biochemical approach and the soluble form of MalK as a model substrate, we demonstrate that MalK alone inhibits transcription activation by MalT in a purified transcription system. The inhibitory effect observed in vitro is relieved by maltotriose and by two malT mutations and one malK mutation known to interfere with MalT repression by MalK in vivo. MalK interacts directly with the activator in the absence of maltotriose but not in the presence of maltotriose. Conversely, MalK inhibits maltotriose binding by MalT. Altogether, these data strongly suggest that MalK and maltotriose compete for MalT binding. Part, if not all, of the MalK-binding site is located on DT1, the N-terminal domain of MalT. All of these features indicate that MalK inhibits MalT by the same mechanism as two other proteins, MalY and Aes, that also act as negative effectors of MalT by antagonizing maltotriose binding by MalT. These results offer new insights into the mechanism by which gene regulation can be accomplished by the ATPase component of a bacterial ATP-binding cassette-type importer.
    Journal of Biological Chemistry 09/2004; 279(32):33123-30. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The maltose system of Escherichia coli consists of a number of genes encoding proteins involved in the uptake and metabolism of maltose and maltodextrins. The system is positively regulated by MalT, its transcriptional activator. MalT activity is controlled by two regulatory circuits: a positive one with maltotriose as effector and a negative one involving several proteins. MalK, the ATP-hydrolyzing subunit of the cognate ABC transporter, MalY, an enzyme with the activity of a cystathionase, and Aes, an acetyl esterase, phenotypically act as repressors of MalT activity. By in vivo titration assays, we have shown that the N-terminal 250 amino acids of MalT contain the interaction site for MalY but not for MalK. This was confirmed by gel filtration analysis, where MalY was shown to coelute with the N-terminal MalT structural domain. Mutants in MalT causing elevated mal gene expression in the absence of exogenous maltodextrins were tested in their response to the three repressors. The different MalT mutations exhibited a various degree of sensitivity towards these repressors, but none was resistant to all of them. Some of them became nearly completely resistant to Aes while still being sensitive to MalY. These mutations are located at positions 38, 220, 243, and 359, most likely defining the interaction patch with Aes on the three-dimensional structure of MalT.
    Journal of Bacteriology 07/2002; 184(11):3069-77. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MalT, the transcriptional activator of the maltose regulon from Escherichia coli, is the prototype of a new family of transcription factors. Its activity is controlled by multiple regulatory signals. ATP and maltotriose (the inducer) are two effectors of the activator that positively control its multimerization, a critical step in promoter binding. In addition, MalK, the ABC component of the maltodextrin transport system, and the two enzymes MalY and Aes down-regulate MalT activity in vivo. By using a biochemical approach, we demonstrate here that (i) Aes controls MalT activity through direct protein-protein interaction, (ii) Aes competes with maltotriose for MalT binding, (iii) ATP and ADP differentially affect the competition between Aes and the inducer, and (iv) part, if not all, of the Aes binding site is located in DT1, the N-terminal domain of the activator, which also contains the ATP binding site. All of these characteristics point toward an identical mode of action for MalY and Aes. However, we have identified an amino acid substitution in MalT that suppresses MalT inhibition by Aes without interfering with its inhibition by MalY, suggesting that the binding sites of the two inhibitory proteins do not coincide. The differential effects of ATP and ADP on the competition between the inducer and Aes (or MalY) suggest that the ATPase activity displayed by MalT plays a role in the negative control of its activity.
    Journal of Biological Chemistry 06/2002; 277(19):16606-13. · 4.65 Impact Factor
  • Source
    E Richet
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the Escherichia coli malEp promoter relies on the formation of a higher order structure involving cooperative binding of MalT to promoter-proximal and promoter-distal sites as well as CRP binding to three sites located in between. MalT is the primary activator and one function of CRP is to facilitate cooperative binding of MalT to its cognate sites by bending the intervening DNA. It is shown here that CRP also participates directly in malEp activation. This function is carried out by the molecule of CRP bound to the CRP site centered at -139.5 (CRP site 3). This molecule of CRP recruits RNA polymerase by promoting the binding of the RNA polymerase alpha subunit C-terminal domain (alphaCTD) to DNA immediately downstream from CRP site 3, via a contact between alphaCTD and activating region I of CRP. The action of MalT and CRP at malEp hence provides the example of a novel and complex mechanism for transcriptional synergy in prokaryotes whereby one activator both helps the primary activator to form a productive complex with promoter DNA and interacts directly with RNA polymerase holoenzyme.
    The EMBO Journal 11/2000; 19(19):5222-32. · 9.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MalT, the transcriptional activator of the Escherichia coli maltose regulon, self-associates, binds promoter DNA and activates initiation of transcription only in the presence of ATP and maltotriose, the inducer. In vivo studies have revealed that MalT action is negatively controlled by the MalY protein. Using a biochemical approach, we analyse here the mechanism whereby MalY represses MalT activity. We show that MalY inhibits transcription activation by MalT in a purified transcription system. In vitro, a constitutive MalT variant (which is partially active in the absence of maltotriose) is less sensitive than wild-type MalT to repression by MalY, as observed in vivo. We demonstrate that MalY forms a complex with MalT only in the absence of maltotriose and that, conversely, MalY inhibits maltotriose binding by MalT. Together, these results establish that MalY acts directly upon MalT without the help of any factor, and that MalY is a negative effector of MalT competing with the inducer for MalT binding.
    Molecular Microbiology 03/2000; 35(4):765-76. · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MalT, the transcriptional activator of the Escherichia coli maltose regulon, self-associates, binds promoter DNA and activates initiation of transcription only in the presence of ATP and maltotriose, the inducer. In vivo studies have revealed that MalT action is negatively controlled by the MalY protein. Using a biochemical approach, we analyse here the mechanism whereby MalY represses MalT activity. We show that MalY inhibits transcription activation by MalT in a purified transcription system. In vitro, a constitutive MalT variant (which is partially active in the absence of maltotriose) is less sensitive than wild-type MalT to repression by MalY, as observed in vivo. We demonstrate that MalY forms a complex with MalT only in the absence of maltotriose and that, conversely, MalY inhibits maltotriose binding by MalT. Together, these results establish that MalY acts directly upon MalT without the help of any factor, and that MalY is a negative effector of MalT competing with the inducer for MalT binding.
    Molecular Microbiology 01/2000; 35(4):765 - 776. · 4.96 Impact Factor
  • V Schreiber, E Richet
    [Show abstract] [Hide abstract]
    ABSTRACT: MalT, the transcriptional activator of the Escherichia coli maltose regulon, binds the MalT-dependent promoters and activates transcription initiation only in the presence of maltotriose and ATP (or adenylyl imidodiphosphate (AMP-PNP)). Cooperative binding of MalT to the array of cognate sites present in the MalT-dependent promoters suggests that promoter binding involves MalT oligomerization. Gel filtration and sedimentation experiments were used to analyze the quaternary structure of MalT in solution in the absence or presence of maltotriose and/or AMP-PNP, ATP, or ADP. The protein is monomeric in the absence of ligands and in the presence of ADP. In the presence of maltotriose, AMP-PNP, or ATP only, the protein self-associates, but a large fraction of the protein remains monomeric. In the presence of both maltotriose and AMP-PNP (ATP or ADP), the protein is essentially oligomeric, with the difference being that the oligomerization is less favored in the presence of ADP + maltotriose than in the presence of AMP-PNP + maltotriose. We present evidence that the association pathway comprises the following steps: monomers --> dimers --> (MalT)(n) --> aggregates, where 3 </= n </= 6. From these data, we conclude that the role of maltotriose and ATP as positive effectors is to induce the multimerization of MalT, and hence its cooperative binding to the mal promoters.
    Journal of Biological Chemistry 11/1999; 274(47):33220-6. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nucleoid-associated protein H-NS is a major component of the chromosome-protein complex, and it is known to influence the regulation of many genes in Escherichia coli. Its role in gene regulation is manifested by the increased expression of several gene products in hns mutant strains. Here we report findings showing that H-NS and the largely homologous protein StpA play a positive role in the expression of genes in the maltose regulon. In studies with hns mutant strains and derivatives also deficient in the stpA gene, we found that expression of the LamB porin was decreased. Our results showed that the amounts of both LamB protein and lamB mRNA were greatly reduced in hns and hns-stpA mutant strains. The same results were obtained when we monitored the amount of transcription from the malEFG operon. The lamB gene is situated in the malKlamBmalM operon, which forms a divergent operon complex together with the malEFG operon. The activation of these genes depends on the action of the maltose regulon activator MalT and the global activator cyclic AMP receptor protein. Using a malT-lacZ translational fusion and antiserum raised against MalT to measure the expression of MalT, we detected reduced MalT expression in hns and hns-stpA mutant strains in comparison with the wild-type strain. Our results suggest that the H-NS and StpA proteins stimulate MalT translation and hence play a positive role in the control of the maltose regulon.
    Journal of Bacteriology 01/1999; 180(23):6117-25. · 3.19 Impact Factor
  • E Richet
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of malEp and malKp, two divergent promoters from Escherichia coli, depends on the synergistic action of MalT and CRP. The reaction involves a common regulatory region located in between and comprising multiple binding elements for both regulatory proteins. The binding of MalT and CRP to this region is known to result in the formation of a higher-order structure that is responsible for malKp activation. This paper presents genetic data which together with previous results, provide compelling evidence that this higher-order structure is also responsible for malEp activation. The role(s) that this structure or elements thereof play in the activation of malEp is analysed by monitoring both the occupancy of the proximal MalT sites (sites 1 and 2) and the activity of different malEp variants in strains containing increasing amounts of active MalT. A truncated malEp promoter comprising only MalT sites 1 and 2 forms a minimal MalT-dependent promoter whose activity is limited by the occupancy of these sites. One role of the higher-order structure formed by MalT and CRP when bound to the entire regulatory region is to ensure high occupation of MalT sites 1 and 2, but it is not its only function. Some elements of this structure, namely the CRP site 1, located at -76.5, and the distal MalT sites, seem to play a direct role in malEp activation besides their participation in the assembly of the higher-order structure.
    Journal of Molecular Biology 01/1997; 264(5):852-62. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of transcription initiation at the Escherichia coli malKp promoter requires the repositioning of MalT, the primary activator, from a set of non-productive sites to a set of productive sites, which is staggered by 3 bp. Occupation of the latter relies on the formation of a higher order structure involving distal MalT sites and the binding of CRP (cAMP receptor protein) to three sites located in the intervening region. We show here that one can successfully replace all of the CRP sites by the binding site of another DNA-bending protein, integration host factor, or by a sequence-directed bend without altering the process of malKp activation. This observation indicates that CRP action at malKp does not involve critical interactions with MalT and that CRP promotes MalT repositioning primarily through DNA bending. This structural role of CRP differs markedly from its role in the activation of the lac promoter.
    The EMBO Journal 11/1994; 13(19):4558-67. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MalT, the transcriptional activator of the Escherichia coli maltose regulon, is a 901-amino acid-long protein that specifically binds to short, asymmetric nucleotide sequences present in several copies in the promoters of the regulon. We report that the protein structure involved in this specific binding is carried by a small C-terminal part of MalT encompassing the last 95 amino acid residues. This was demonstrated by fusing the last 95 codons of malT to the gene that encodes glutathione S-transferase, purifying the hybrid protein by affinity chromatography, and comparing the DNase I and dimethyl sulfate footprints of the hybrid and of wild-type MalT on different MalT-binding sites. MalT belongs to a large family of prokaryotic transcriptional activators, which share significant homology in their approximately 60-amino acid C-terminal regions. Our result strongly supports the suggestion that the region of homology corresponds to the DNA-binding domain of the proteins in this family.
    Journal of Biological Chemistry 12/1993; 268(33):24527-30. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cAMP receptor protein (CRP) and MaIT, the maltose regulon activator, synergistically activate transcription from the E. coli maIKp promoter. The maIKp regulatory region comprises two series of MaIT-binding sites separated by three CRP-binding sites. By combining genetic and biochemical studies, we demonstrate that the promoter-proximal region contains two overlapping sets of three MaIT-binding sites. Occupation of the higher affinity set of sites, which occurs in the absence of CRP, does not lead to malKp activation. In contrast, in the presence of CRP, MalT binds to the lower affinity set of sites and triggers transcription initiation because, unlike the high affinity set, the low affinity set of sites is properly positioned with respect to the Pribnow box. The CRP effect requires the malKp-distal MalT-binding sites. The synergistic action of MalT and CRP therefore relies on MalT repositioning via the formation of a nucleoprotein structure involving the entire regulatory region.
    Cell 10/1991; 66(6):1185-95. · 31.96 Impact Factor
  • E Richet, O Raibaud
    [Show abstract] [Hide abstract]
    ABSTRACT: malEp and malKp are divergent and partially overlapping promoters of the Escherichia coli maltose regulon, whose activity depends on the presence of two transcriptional activators. MalT and CRP (cAMP receptor protein). Their activation involves a common 210 base-pair regulatory region encompassing multiple binding sites for both activators. Using a supercoiled plasmid containing malEp and malKp as template, purified proteins and a single-round transcription assay, we developed an in vitro system in which both promoters behave as in vivo. In this system, malEp and malKp are active only in the presence of both MalT and CRP, and various mutations in the MalT or CRP binding sites affect the promoters in the same way as they do in vivo. We showed that supercoiling plays a crucial role not only for the formation of the initiation complex at malEp and malKp but also for its stability. In addition, dimethylsulphate protection experiments provide evidence that the nucleoprotein complexes formed by CRP and MalT bound to malEp and malKp on supercoiled and relaxed DNA are different. We speculate that one of the roles of supercoiling might be to assist the assembly of a preinitiation complex involving the regulatory region DNA and several molecules of MalT and CRP.
    Journal of Molecular Biology 05/1991; 218(3):529-42. · 3.91 Impact Factor

Publication Stats

683 Citations
162.75 Total Impact Points

Institutions

  • 2013
    • Paris Diderot University
      Lutetia Parisorum, Île-de-France, France
  • 1987–2013
    • Center for Molecular Genetics
      Gif, Île-de-France, France
  • 1989–2005
    • Institut Pasteur
      Lutetia Parisorum, Île-de-France, France
  • 1993
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France