Jae Bum Kim

Seoul National University, Sŏul, Seoul, South Korea

Are you Jae Bum Kim?

Claim your profile

Publications (85)360.4 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified gene LIpid Droplet protein-1 (C25A1.12; LID-1) modulates lipolysis by binding to Adipose TriGlyceride Lipase-1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNAi resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cAMP levels, which activated PKA to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding was augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis.
    Molecular and cellular biology. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To elucidate which factors are involved in the inactivation of SREBP1c, we attempted to identify SREBP1c‐interacting proteins by mass spectrometry analysis. Since we observed that ring finger protein20 (RNF20) ubiquitin ligase was identified as one of SREBP1c‐interacting proteins, we hypothesized that fasting signaling would promote SREBP1c degradation in an RNF20‐dependent manner. In this work, we demonstrate that RNF20 physically interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In accordance with these findings, RNF20 represses the transcriptional activity of SREBP1c and turns off the expression of lipogenic genes that are targets of SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of SREBP1c and lipogenic genes and induces lipogenic activity in primary hepatocytes. Furthermore, activation of protein kinase A (PKA) with glucagon or forskolin enhances the expression of RNF20 and potentiates the ubiquitination of SREBP1c via RNF20. In wild‐type and db/db mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter activity and reduces the level of hepatic triglycerides, accompanied by a decrease in the hepatic lipogenic program. Here, we reveal that RNF20‐induced SREBP1c ubiquitination down‐regulates hepatic lipogenic activity upon PKA activation. Conclusion: RNF20 acts as a negative regulator of hepatic fatty acid metabolism through degradation of SREBP1c upon PKA activation. Knowledge regarding this process enhances our understanding of how SREBP1c is able to turn off hepatic lipid metabolism during nutritional deprivation. (Hepatology 2014;60:844–857)
    Hepatology 09/2014; 60(3). · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In obesity, adipose tissue macrophages (ATMs) play a key role in mediating proinflammatory responses in the adipose tissue, which are associated with obesity-related metabolic complications. Recently, adipose tissue hypoxia has been implicated in the regulation of ATMs in obesity. However, the role of hypoxia-inducible factor (HIF)-2α, one of the major transcription factors induced by hypoxia, has not been fully elucidated in ATMs. In this study, we demonstrate that elevation of macrophage HIF-2α would attenuate adipose tissue inflammation and improve insulin resistance in obesity. In macrophages, overexpression of HIF-2α decreased nitric oxide production and suppressed expression of proinflammatory cytokines through induction of arginase 1. HIF-2α-overexpressing macrophages alleviated proinflammatory responses and improved insulin resistance in adipocytes. In contrast, knockdown of macrophage HIF-2α augmented palmitate-induced proinflammatory gene expression in adipocytes. Furthermore, compared with wild-type mice, Hif-2α heterozygous-null mice aggravated insulin resistance and adipose tissue inflammation with more M1-like ATMs upon high-fat diet (HFD). Moreover, glucose intolerance in HFD-fed Hif-2α heterozygous-null mice was relieved by macrophage depletion with clodronate treatment, implying that increase of proinflammatory ATMs is responsible for insulin resistance by haplodeficiency of Hif-2α upon HFD. Taken together, these data suggest that macrophage HIF-2α would counteract the proinflammatory responses to relieve obesity-induced insulin resistance in adipose tissue.
    Diabetes 06/2014; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipocyte differentiation, termed adipogenesis, is a complicated process in which pluripotent mesenchymal stem cells differentiate into mature adipocytes. The process of adipocyte differentiation is tightly regulated by a number of transcription factors, hormones and signaling pathway molecules. Recent studies have demonstrated that microRNAs, which belong to small noncoding RNA species, are also involved in adipocyte differentiation. In vivo and in vitro studies have revealed that various microRNAs affect adipogenesis by targeting several adipogenic transcription factors and key signaling molecules. In this review, we will summarize the roles of microRNAs in adipogenesis and their target genes associated with each stage of adipocyte differentiation.
    Endocrinology and metabolism (Seoul, Korea). 06/2014; 29(2):122-35.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.
    Molecules and Cells 04/2014; · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperlipidemia is a well-recognized risk factor for atherosclerosis and can be regulated by adipokines. Expression of the adipokine resistin-like molecule alpha (Retnla) is regulated by food intake; whether Retnla has a role in the pathogenesis of hyperlipidemia and atherosclerosis is unknown. Here we report that Retnla has a cholesterol-lowering effect and protects against atherosclerosis in low-density lipoprotein receptor-deficient mice. On a high-fat diet, Retnla deficiency promotes hypercholesterolaemia and atherosclerosis, whereas Retnla overexpression reverses these effects and improves the serum lipoprotein profile, with decreased cholesterol in the very low-density lipoprotein fraction concomitant with reduced serum apolipoprotein B levels. We show that Retnla upregulates cholesterol-7-α-hydroxylase, a key hepatic enzyme in the cholesterol catabolic pathway, through induction of its transcriptional activator liver receptor homologue-1, leading to increased excretion of cholesterol in the form of bile acids. These findings define Retnla as a novel therapeutic target for treating hypercholesterolaemia and atherosclerosis.
    Nature Communications 01/2014; 5:4410. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liquid chromatography based mass spectrometry (LC-MS) is a key technology for analyzing highly complex and dynamic proteome samples. With highly accurate and sensitive LC-MS analysis of complex proteome samples, efficient data processing is another critical issue to obtain more information from LC-MS data. A typical proteomic data processing starts with protein database search engine which assigns peptide sequences to MS/MS spectra and finds proteins. Although several search engines, such as SEQUEST and MASCOT, have been widely used, there is no unique standard way to interpret MS/MS spectra of peptides. Each search engine has pros and cons depending on types of mass spectrometers and physicochemical properties of peptides. In this study, we describe a novel data process pipeline which identifies more peptides and proteins by correcting precursor ion mass numbers and unifying multi search engines results. The pipeline utilizes two open-source software, iPE-MMR for mass number correction, and iProphet to combine several search results. The integrated pipeline identified 25% more proteins in mouse epididymal adipose tissue compared with the conventional method. Also the pipeline was validated using control and colitis induced colon tissue. The results of the present study shows that the integrated pipeline can efficiently identify increased number of proteins compared to the conventional method which can be a breakthrough in identification of a potential biomarker candidate.
    Mass Spectrometry Letters. 01/2014; 5(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: SREBP1c is a key transcription factor that regulates de novo lipogenesis during anabolic periods. However, the molecular mechanisms involved in the suppression of SREBP1c under nutritional deprivation are largely unknown. In this study, we demonstrate that the small ubiquitin-related modifier (SUMO) E3 ligase, protein inhibitor of activated STAT Y (PIASy), sumoylates SREBP1c at Lys98, leading to suppression of the hepatic lipogenic program upon fasting-induced signals. In primary hepatocytes, ablation of PIASy stimulates intracellular lipid accumulation through the induction of SREBP1c and its target genes. Given that PKA plays important roles in catabolic responses, activated PKA enhances the sumoylation of SREBP1c and potentiates the interaction between SREBP1c and PIASy. Notably, overexpression of PIASy in obese db/db mice ameliorates hepatic steatosis while suppression of PIASy in lean (wild-type) mice stimulates hepatic lipogenesis with increased expression of SREBP1c target genes. Furthermore, protein kinase A (PKA)-mediated SREBP1c phosphorylation augments SREBP1c sumoylation, subsequently leading to degradation of SREBP1c via ubiquitination. Together, these data suggest that PKA-induced SREBP1c sumoylation by PIASy is a key regulatory mechanism to turn off hepatic lipogenesis during nutritional deprivation.
    Molecular and Cellular Biology 12/2013; · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme that regulates cellular redox potential. In this study, we demonstrate that macrophage G6PD plays an important role in the modulation of proinflammatory responses and oxidative stress. The G6PD levels in macrophages in the adipose tissue of obese animals were elevated, and G6PD mRNA levels positively correlated with those of proinflammatory genes. Lipopolysaccharide (LPS) and free fatty acids, which initiate proinflammatory signals, stimulated macrophage G6PD. Overexpression of macrophage G6PD potentiated the expression of proinflammatory and pro-oxidative genes responsible for the aggravation of insulin sensitivity in adipocytes. In contrast, when macrophage G6PD was inhibited or suppressed via chemical inhibitors or siRNA, respectively, basal and LPS-induced proinflammatory gene expression was attenuated. Furthermore, macrophage G6PD increased activation of the p38 MAPK and NF-κB pathways, which may lead to a vicious cycle of oxidative stress and proinflammatory cascade. Together, these data suggest that an abnormal increase of G6PD in macrophages promotes oxidative stress and inflammatory responses in the adipose tissue of obese animals.
    Molecular and Cellular Biology 04/2013; · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that obese animals exhibit increased endoplasmic reticulum (ER) stress in the liver and adipose tissue. Although ER stress is closely associated with lipid homeostasis, it is largely unknown how ER stress contributes to hepatic steatosis. In this study, we demonstrate that the induction of ER stress stimulates hepatic steatosis through increased expression of the hepatic very low-density lipoprotein receptor (VLDLR). Among the unfolded protein response sensors, the protein kinase RNA-like ER kinase–activating transcription factor 4 signaling pathway was required for hepatic VLDLR up-regulation. In primary hepatocytes, ER stress–dependent VLDLR expression induced intracellular triglyceride accumulation in the presence of very low-density lipoprotein. Moreover, ER stress–dependent hepatic steatosis was diminished in the livers of VLDLR-deficient and apolipoprotein E–deficient mice compared with wild-type mice. In addition, the VLDLR-deficient mice exhibited decreased hepatic steatosis upon high-fat diet feeding. Conclusion: These data suggest that ER stress–dependent expression of hepatic VLDLR leads to hepatic steatosis by increasing lipoprotein delivery to the liver, which might be a novel mechanism explaining ER stress–induced hepatic steatosis. (HEPATOLOGY 2013;57:1366–1377)
    Hepatology 04/2013; 57(4). · 12.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine the survival rate of patients with non-small cell lung cancer (NSCLC) who were preoperatively diagnosed with a negative N2 lymph node, but postoperatively confirmed as a positive N2 node based on a pathological evaluation. The hospital records of 248 patients from 1994 to 2009 with resected primary NSCLC who were preoperatively diagnosed with negative N2 lymph node, were retrospectively reviewed. Of these, after surgery, there were 148 (59.7%) patients with pathological N0, 54 (21.8%) with pathological N1 and 46 (18.5%) with pathological N2. The median follow-up period was 24 months (range, 1 to 132 months). The 5-year disease free survival rates were 60% in pN0, 44% in pN1, and 29% in pN2. The 5-year overall survival rates were 63.1% in pN0, 51.9% in pN1, and 33.5% in pN2. There were no statistically significant differences between pN1 and pN2 (p=0.326 and p=0.106, respectively). Thirty-three (71.7%) of the 46 pN2 patients had single-zone metastasis, and 13 patients (28.3%) had multiple-zone metastases over the two nodal zone metastasis. There were no statistical differences in the 5-year disease free survival rate and the 5-year overall survival rates between the two groups. The 5-year disease free survival and the overall survival rate of the patients with unsuspected N2 disease were statistically similar with that of the patients with pathological N1 disease. There was no statistically significant difference between the patients with a single-zone metastasis and a multiple zone metastasis.
    The Korean journal of thoracic and cardiovascular surgery. 02/2013; 46(1):49-55.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic low-grade chronic inflammation has been intensively investigated in obese subjects. Recently, various immune cell types, such as macrophages, granulocytes, helper T cells, cytotoxic T cells, and B cells, have been implicated in the pathogenesis of adipose tissue inflammation. However, the roles of invariant natural killer T cells (iNKT cells) and the regulation of iNKT cell activity in adipose tissue are not thoroughly understood. Here, we demonstrated that iNKT cells were decreased in number in the adipose tissue of obese subjects. Interestingly, CD1d, a molecule involved in lipid antigen presentation to iNKT cells, was highly expressed in adipocytes and CD1d-expressing adipocytes stimulated iNKT cell activity through physical interaction. iNKT cell population and CD1d expression were reduced in the adipose tissue of obese mice and humans compared to those of lean subjects. Moreover, iNKT cell-deficient Jα18 knockout mice became more obese and exhibited increased adipose tissue inflammation at the early stage of obesity. These data suggest that adipocytes regulate iNKT cell activity via CD1d and that the interaction between adipocytes and iNKT cells may modulate adipose tissue inflammation in obesity.
    Molecular and Cellular Biology 11/2012; · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synchronous carcinomas of the esophagus and other organs are relatively uncommon. A 65-year old man with synchronous carcinomas of the esophagus and stomach underwent esophageal reconstruction using a gastric tube following endoscopic submucosal dissection.
    Asian cardiovascular & thoracic annals 10/2012; 20(5):600-3.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The combination of right-sided Poland syndrome and dextrocardia is rare. To our knowledge, reports regarding this subject are lacking in the published literature to date. Previous reports suggested that dextrocardia may be part of the left sided Poland syndrome. We report and discuss this rare combination.
    The Annals of thoracic surgery 10/2012; 94(4):e103–e104. · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 42-year-old male patient with no medical history except hypertension presented with intermittent chest pain radiating to the left shoulder. From coronary computed tomography, a coarctation of proximal descending thoracic aorta was found demonstrating near aortic occlusion. From various available surgical options for this condition, we chose extraanatomic bypass from the left subclavian artery to the descending aorta.
    Vascular and Endovascular Surgery 07/2012; 46(7):582-4. · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the case of an adult patient with the unusual combination of a perimembranous (PM) ventricular septal defect (VSD), asymptomatic ruptured sinus of Valsalva communicating with the right ventricle, and a bicuspid aortic valve. Bulged sinus of Valsalva might conceal the small PM VSD, therefore the patient had no symptom-associated VSD until grown up. However, when aortic valve regurgitation associated with prolapsed right aortic cusp worsened and ruptured sinus of Valsalva was found by echocardiogram, the patient underwent aortic valve replacement with anatomical surgical correction of the aortic sinus and VSD.
    The Thoracic and Cardiovascular Surgeon 07/2012; · 0.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we demonstrate that activation of AMP-activated protein kinase (AMPK) with glabridin alleviates adiposity and hyperlipidemia in obesity. In several obese rodent models, glabridin decreased body weight and adiposity with a concomitant reduction in fat cell size. Further, glabridin ameliorated fatty liver and plasma levels of triglyceride and cholesterol. In accordance with these findings, glabridin suppressed the expression of lipogenic genes such as sterol regulatory element binding transcription factor (SREBP)-1c, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase (SCD)-1 in white adipose tissues and liver, whereas it elevated the expression of fatty acid oxidation genes such as carnitine palmitoyl transferase (CPT)1, acyl-CoA oxidase (ACO), and peroxisome proliferator-activated receptor (PPAR)α in muscle. Moreover, glabridin enhanced phosphorylation of AMPK in muscle and liver and promoted fatty acid oxidation by modulating mitochondrial activity. Together, these data suggest that glabridin is a novel AMPK activator that would exert therapeutic effects in obesity-related metabolic disorders.
    The Journal of Lipid Research 04/2012; 53(7):1277-86. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the expression of light-regulated hypothalamic circadian clock genes was unaffected by either a normal chow diet (NCD) or a high-fat diet (HFD). In the liver, the expression pattern of circadian clock genes, including Bmal1, Clock, and Per2, was changed by different feeding period restrictions. Moreover, the expression of lipogenic genes, gluconeogenic genes, and fatty acid oxidation-related genes in the liver was also altered by feeding period restriction. Given that feeding period restriction does not affect body weight gain with a NCD or HFD, it is likely that the amount of food consumed might be a crucial factor in determining body weight. Collectively, these data suggest that feeding period restriction modulates the expression of peripheral circadian clock genes, which is uncoupled from light-sensitive hypothalamic circadian clock genes.
    PLoS ONE 01/2012; 7(11):e49993. · 3.53 Impact Factor
  • Thrombosis Research 12/2011; 129(4):523-5. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue inflammation is a key factor underlying insulin resistance in established obesity. Several models of immuno-compromised mice are protected from obesity-induced insulin resistance. However, it is unanswered whether inflammation triggers systemic insulin resistance or vice versa in obesity. The purpose of this study was to assess these questions. We fed a high-fat diet (HFD) to wild-type mice and three different immuno-compromised mouse models (lymphocyte-deficient Rag1 knockout, macrophage-depleted, and hematopoietic cell-specific Jun NH(2)-terminal kinase-deficient mice) and measured the time course of changes in macrophage content, inflammatory markers, and lipid accumulation in adipose tissue, liver, and skeletal muscle along with systemic insulin sensitivity. In wild-type mice, body weight and adipose tissue mass, as well as insulin resistance, were clearly increased by 3 days of HFD. Concurrently, in the short-term HFD period inflammation was selectively elevated in adipose tissue. Interestingly, however, all three immuno-compromised mouse models were not protected from insulin resistance induced by the short-term HFD. On the other hand, lipid content was markedly increased in liver and skeletal muscle at day 3 of HFD. These data suggest that the initial stage of HFD-induced insulin resistance is independent of inflammation, whereas the more chronic state of insulin resistance in established obesity is largely mediated by macrophage-induced proinflammatory actions. The early-onset insulin resistance during HFD feeding is more likely related to acute tissue lipid overload.
    Diabetes 09/2011; 60(10):2474-83. · 7.90 Impact Factor

Publication Stats

2k Citations
360.40 Total Impact Points

Institutions

  • 2003–2014
    • Seoul National University
      • • Department of Biological Sciences
      • • Institute of Molecular Biology and Genetics
      Sŏul, Seoul, South Korea
  • 2013
    • University of Ulsan
      • Department of Biological Science
      Urusan, Ulsan, South Korea
  • 2010
    • Keimyung University
      • Dongsan Medical Center
      Sŏul, Seoul, South Korea
  • 2005
    • Sungkyunkwan University
      • Department of Systems Management Engineering (SME)
      Sŏul, Seoul, South Korea