Noritada Kaji

Nagoya University, Nagoya, Aichi, Japan

Are you Noritada Kaji?

Claim your profile

Publications (128)546.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We synthesized, in aqueous solution at room temperature, small water-soluble CdSe quantum dots (QDs) with strong photoluminescence (PL) and then correlated the PL with their adsorption layer structure. For synthesizing the QDs, their initial synthesis condition was controlled to form small Cd-containing species capable of passivating dangling bonds on the CdSe core surface. Each CdSe QD (d ~ 2.5 nm) consisted of a CdSe core (d ~ 2.1 nm), a cysteine (cys)-ligand shell, and an adsorption layer composed of Cd–cys complexes (mainly CdL(-H)−, cys ≡ H2L), cys (as L2−), Cd(OH)2, and CdO x (x ≥ 1). Our CdSe QDs showed strong blue band-edge PL as well as strong green surface trap PL. Their PL quantum yield (QY) of ~18% was unexpectedly high, considering their extremely small core size and their absence of any wide-bandgap inorganic shell. We attributed the QY to their adsorption layer species. The small weakly charged Cd–cys complex and the small neutral cadmium oxides in the adsorption layer could relatively readily diffuse into the unprotected surface sites on the core. These wide-bandgap species coalesced selectively on the unprotected surface sites with minimal spatial disturbance to the preexisting surface Cd-ligand coordination, and passivated them effectively. These decreased nonradiative recombination of the excitons significantly and thus led to the unexpectedly high QYs.
    Journal of Nanoparticle Research 11/2011; DOI:10.1007/s11051-011-0273-7 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipose tissue-derived stem cells (ASCs) have shown promise in cell therapy because of their ability to self-renew damaged or diseased organs and easy harvest. To ensure the distribution and quantification of the ASCs injected from tail vein, several whole-body imaging techniques including fluorescence optical imaging with quantum dots (QDs) have been employed, but they may suffer from insufficient sensitivity and accuracy. Here, we report quantitative distribution of ASCs in various organs (heart, lung, liver, spleen, and kidney) of mice, which were intravenously injected with QDs-labeled ASCs (QDs-ASCs), through the detection of QDs-derived metallic components by inductively coupled plasma mass spectrometry (ICPMS). For accurate and precise determination, each organ was harvested and completely digested with a mixture of HNO(3) and H(2)O(2) in a microwave oven prior to ICPMS measurement, which was equipped with a microflow injection system and a laboratory-made capillary-attached micronebulizer. After optimization, 16 elements including major components (Cd, Se, and Te) of QDs and essential elements (Na, K, Mg, Ca, P, S, Mn, Fe, Co, Cu, Zn, Se, Sr, and Mo) were successfully determined in the organs. As compared to untreated mice, QDs-ASCs-treated mice showed significantly higher levels of Cd and Te in all organs, and as expected, the molar ratio of Cd to Te in each organ was in good agreement with the molar composition ratio in the QDs. This result indicates that the increment of Cd (or Te) can be used as a tracer for calculating the distribution of ASCs in mice organs. As a result of the calculation, 36.8%, 19.1%, 0.59%, 0.49%, and 0.25% of the total ASCs injected were estimated to be distributed in the liver, lung, heart, spleen, and kidney, respectively.
    Analytical Chemistry 09/2011; 83(21):8252-8. DOI:10.1021/ac202053y · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we report that nanopillar array structures have an intrinsic ability to suppress electroosmotic flow (EOF). Currently using glass chips for electrophoresis requires laborious surface coating to control EOF, which works as a counterflow to the electrophoresis mobility of negatively charged samples such as DNA and sodium dodecyl sulfate (SDS) denatured proteins. Due to the intrinsic ability of the nanopillar array to suppress the EOF, we carried out electrophoresis of SDS-protein complexes in nanopillar chips without adding any reagent to suppress protein adsorption and the EOF. We also show that the EOF profile inside a nanopillar region was deformed to an inverse parabolic flow. We used a combination of EOF measurements and fluorescence observations to compare EOF in microchannel, nanochannel, and nanopillar array chips. Our results of EOF measurements in micro- and nanochannel chips were in complete agreement with the conventional equation of the EOF mobility (μ(EOF-channel) = αC(i)(-0.5), where C(i) is the bulk concentration of the i-ions and α differs in micro- and nanochannels), whereas EOF in the nanopillar chips did not follow this equation. Therefore we developed a new modified form of the conventional EOF equation, μ(EOF-nanopillar) ≈ β[C(i) - (C(i)(2)/N(i))], where N(i) is the number of sites available to i-ions and β differs for each nanopillar chip because of different spacings or patterns, etc. The modified equation of the EOF mobility that we proposed here was in good agreement with our experimental results. In this equation, we showed that the charge density of the nanopillar region, that is, the total number of nanopillars inside the microchannel, affected the suppression of EOF, and the arrangement of nanopillars into a tilted or square array had no effect on it.
    ACS Nano 09/2011; 5(10):7775-80. DOI:10.1021/nn2030379 · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a new passive-type micromixer based on the baker's transformation and realized a fast mixing of a protein solution, which has lower diffusion constant. The baker's transformation is an ideal mixing method, but there is no report on the microfluidic baker's transformation (MBT), since it is required to fabricate the complicated three-dimensional (3D) structure to realize the MBT device. In this note, we successfully fabricate the MBT device by using precision diamond cutting of an oxygen-free copper substrate for the mould fabrication and PDMS replication. The MBT device with 10.4 mm mixing length enables us to achieve complete mixing of a FITC solution (D = 2.6 × 10(-10) m(2) s(-1)) within 51 ms and an IgG solution (D = 4.6 × 10(-11) m(2) s(-1)) within 306 ms. Its mixing speed is 70-fold higher for a FITC solution and 900-fold higher for an IgG solution than the mixing speed by the microchannel without MBT structures. The Péclet number to attain complete mixing in the MBT device is estimated to be 6.9 × 10(4).
    Lab on a Chip 08/2011; 11(19):3356-60. DOI:10.1039/c1lc20342h · 5.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microchip analysis is a promising method for therapeutic drug monitoring. This led us to evaluate a microchip-based fluorescence polarization immunoassay (FPIA) system for point-of-care testing on patients being treated with theophylline. The sera were collected from 20 patients being treated with theophylline. Fluorescence polarization was measured on the microchip and theophylline concentrations in serum were obtained. Regression analysis of the correlations was done between the results given by the microchip-based FPIA and the conventional cloned enzyme donor immunoassay (CEDIA), and between the results given by the microchip-based FPIA and the conventional particle-enhanced turbidimetric inhibition immunoassay (PETINIA). We successfully carried out a quantitative analysis of theophylline in serum at values near its therapeutic range in 65 s. The results obtained by the microchip-based FPIA correlated well with CEDIA and PETINIA results; the correlation coefficients (R(2)) were 0.986 and 0.989, respectively. The FPIA system is a simple and rapid method for point-of-care testing of drugs in serum, and its accuracy is the same as the conventional CEDIA and PETINIA. It is essential to use real samples from patients and to confirm good correlations with conventional methods for a study on the realization of microchip.
    Analytical and Bioanalytical Chemistry 08/2011; 401(7):2301-5. DOI:10.1007/s00216-011-5304-9 · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multifunctional envelope-type gene delivery nanodevices (MENDs) are promising non-viral vectors for gene therapy. Though MENDs remain strong in prolonged exposure to blood circulation, have low immunogenic response, and are suitable for gene targeting, their fabrication requires labor-intensive processes. In this work, a novel approach has been developed for rapid fabrication of MENDs by a touch-and-go lipid wrapping technique in a polydimethylsiloxane (PDMS)/glass microfluidic device. The MEND was fabricated on a glass substrate by introduction of a condensed plasmid DNA core into microfluidic channels that have multiple lipid bilayer films. The principle of the MEND fabrication in the microfluidic channels is based on electrostatic interaction between the condensed plasmid DNA cores and the coated lipid bilayer films. The constructed MEND was collected off-chip and characterized by dynamic light scattering. The MEND was constructed within 5 min with a narrow size distribution centered around 200 nm diameter particles. The size of the MEND showed strong dependence on flow velocity of the condensed plasmid DNA core in the microfluidic channels, and thus, could be controlled to provide the optimal size for medical applications. This approach was also proved possible for fabrication of a MEND in multiple channels at the same time. This on-chip fabrication of the MEND was very simple, rapid, convenient, and cost-effective compared with conventional methods. Our results strongly indicated that MENDs fabricated with our microfluidic device have a good potential for medical use. Moreover, MENDs fabricated by this microfluidic device have a great potential for clinical use because the devices are autoclavable and all the fabrication steps can be completed inside closed microfluidic channels without any external contamination.
    Lab on a Chip 08/2011; 11(19):3256-62. DOI:10.1039/c1lc20392d · 5.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A nanowall array structure was fabricated on a quartz chip as a separation matrix of DNA fragments, and a 30 s separation was realized for a mixture of DNA fragments (48.5 and 1 kbp fragments) by applying the electric voltage. A longer DNA fragment migrates faster than a shorter one in a nanowall array chip, and it is completely different from the separation of DNA based on gel electrophoresis, nanopillar chips, and nanoparticle array chips. Although the result is similar to DNA separation by entropic trapping, it could not be fully explained by entropic trapping phenomena. Direct observation of single-DNA molecular dynamics inside a nanowall array structure indicates that both confined elongation and relaxation recoiling of a DNA molecule occur, and an elongated DNA molecule migrates faster than a recoiled DNA molecule. Numerical fitting of DNA molecular dynamics reveals that the balance between times for the transverse of a DNA molecule in the nanowall array chip and the relaxation-recoiling of a DNA molecule governs the separation of DNA.
    Analytical Chemistry 08/2011; 83(17):6635-40. DOI:10.1021/ac201184t · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A solid-state molecular beacon using a gold support as a fluorescence quencher is combined with a polydimethylsiloxane (PDMS) microfluidic channel to construct an optical sensor for detecting single-stranded DNA binding protein (SSBP) and histone protein. The single-stranded DNA-Cy3 probe or double-stranded DNA-Cy3 probe immobilized on the gold surface is prepared for the detection of SSBP or histone, respectively. Due to the different quenching ability of gold to the immobilized single-stranded DNA-Cy3 probe and the immobilized double-stranded DNA-Cy3 probe, low fluorescence intensity of the attached single-stranded DNA-Cy3 is obtained in SSBP detection, whereas high fluorescence intensity of the attached double-stranded DNA-Cy3 is obtained in histone detection. The amounts of SSBP in sample solutions are determined from the degree of fluorescence recovery of the immobilized single-stranded DNA-Cy3 probe, whereas that of histone in sample solutions is determined from the degree of fluorescence quenching of the immobilized double-stranded DNA-Cy3 probe. Using this approach, label-free detection of target proteins at nanomolar concentrations is achieved in a convenient, general, continuous flow format. Our approach has high potential for the highly sensitive label-free detection of various proteins based on binding-induced conformation changes of immobilized DNA probes.
    Analytical Chemistry 05/2011; 83(9):3528-32. DOI:10.1021/ac200236r · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we developed a multifunctional envelope-type nano device (MEND) for efficient delivery of nucleic acids. For tumor delivery of a MEND, PEGylation is a useful method, which confers a longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. To overcome this, we developed a PEG-peptide-DOPE (PPD) that is cleaved in a matrix metalloproteinase (MMP)-rich environment. In this study, we report on the systemic delivery of siRNA to tumors by employing a MEND that is modified with PPD (PPD-MEND). An in vitro study revealed that PPD modification accelerated both cellular uptake and endosomal escape, compared to a conventional PEG modified MEND. To balance both systemic stability and efficient activity, PPD-MEND was further co-modified with PEG-DSPE. As a result, the systemic administration of the optimized PPD-MEND resulted in an approximately 70% silencing activity in tumors, compared to non-treatment. Finally, a safety evaluation showed that the PPD-MEND showed no hepatotoxicity and innate immune stimulation. Furthermore, in a DNA microarray analysis in liver and spleen tissue, less gene alternation was found for the PPD-MEND compared to that for the PEG-unmodified MEND due to less accumulation in liver and spleen.
    Biomaterials 03/2011; 32(18):4306-16. DOI:10.1016/j.biomaterials.2011.02.045 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the host response to systemically administered lipid nanoparticles (NPs) encapsulating plasmid DNA (pDNA) in the spleen using a DNA microarray. As a model for NPs, we used a multifunctional envelope-type nano device (MEND). Microarray analysis revealed that 1,581 of the differentially expressed genes could be identified by polyethylene glycol (PEG)-unmodified NP using a threefold change relative to the control. As the result of PEGylation, the NP treatment resulted in the reduction in the expression of most of the genes. However, the expression of type I interferon (IFN) was specifically increased by PEGylation. Based on the microarray and a pathway analysis, we hypothesize that PEGylation inhibited the endosomal escape of NP, and extended the interaction of toll-like receptor-9 (TLR9) with CpG-DNA accompanied by the production of type I IFN. This hypothesis was tested by introducing a pH-sensitive fusogenic peptide, GALA, which enhances the endosomal escape of PEGylated NP. As expected, type I IFN was reduced and interleukin-6 (IL-6) remained at the baseline. These findings indicate that a carrier design based on microarray analysis and the manipulation of intracellular trafficking constitutes a rational strategy for reducing the host immune response to NPs.
    Molecular Therapy 03/2011; 19(8):1487-98. DOI:10.1038/mt.2011.24 · 6.43 Impact Factor
  • Biophysical Journal 02/2011; 100(3). DOI:10.1016/j.bpj.2010.12.1037 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Major barriers to delivery of biomolecules are crossing the cellular membranes and achieving a high cytoplasmic concentration by circumventing entrapment into endosomes and other lytic organelles. Motivated by such aim, we have investigated the capability of multiwalled carbon nanotubes (MWCNTs) to penetrate the cell membrane of plant protoplasts (plant cells made devoid of their cell walls via enzymatic treatment) and studied their internalization mechanism via confocal imaging and TEM techniques. Our results indentified an endosome-escaping uptake mode of MWCNTs by plant protoplasts. Moreover, short MWCNTs (<100 nm) were observed to target specific cellular substructures including the nucleus, plastids, and vacuoles. These findings are expected to have a significant impact on plant cell biology and transformation technologies.
    ACS Nano 01/2011; 5(1):493-9. DOI:10.1021/nn102344t · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Online automatic transient isotachophoresis concentration of DNA-aptamer and its thrombin complex by using one kind of pseudo-terminating electrolyte buffer in a cross-channel poly(methyl methacrylate) microchip is reported. Sample injection, transient concentration and separation were done continuously and controlled by a sequential voltage switching program, time-consuming steps and complicated chip design were not required. Peak resolution between DNA-aptamer and its thrombin complex was influenced by this novel pseudo-terminating electrolyte buffer, which was prepared by the addition of chemical component with slow mobility into the same buffer as leading electrolyte buffer. 1100-fold signal enhancement of thrombin complex was achieved by this transient isotachophoresis on a standard cross-form microchip. The concentration effect or standing time of transient isotachophoresis was proved to be influenced by the concentration of leading electrolyte ion and the concentration of pseudo-terminating electrolyte buffer ion (glycine). The transient concentration was followed by on-chip nondenaturing gel electrophoresis in methylcellulose solution for the size-based separation. The detection limit, taken as the lowest thrombin concentration at threefold S/N, was determined to be 0.5 amol in mass by this method.
    The Analyst 01/2011; 136(6):1142-7. DOI:10.1039/c0an00434k · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here a novel chamber-sealing valve that is self-actuated by pressure change during the cyclic temperature changes in PCR processes. Actuation of our valve requirs only a heating device employed for PCR. An UV-curable polymer is used as a device material and it allowed us to realize temperature-driven valve actuation as well as to fabricate a 3D device. The self-actuated microvalve achieves the effective sealing of microchamber for PCR even at 90ºC, which is essential to develop highly parallel PCR array device without any complicated actuator circuits.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report aqueous phase synthesized semiconductor nanoparticles with well-defined numbers of constituent atoms. Aqueous phase synthesis provides many advantages over organic phase synthesis for producing such high-quality semiconductor nanoparticles. We synthesized CdSe nanoparticles with excellent colloidal and optical stabilities directly in aqueous solution at room temperature and then identified them as selectively grown (CdSe)33 and (CdSe)34 magic-sized clusters. These clusters displayed extremely sharp excitonic absorption and emission peaks because of their practically monodispersed size distribution. Their X-ray diffraction pattern and Raman spectral features were considerably different from the corresponding pattern and features for typical crystalline CdSe nanoparticles. Growth of our magic-sized clusters was very slow and proceeded via the formation of different sizes of progressively larger CdSe nanoparticle intermediates with time. Our results demonstrated that aqueous phase synthetic routes could be successfully adopted for producing high-quality semiconductor nanoparticles.
    The Journal of Physical Chemistry C 10/2010; 114(44). DOI:10.1021/jp107608b · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a new rapid and easy-to-use immunoassay chip which we have named the immuno-pillar chip. It has hydrogel pillars, fabricated inside a microchannel, with many antibody molecules immobilized onto 1 µm diameter polystyrene beads. To evaluate the chip performance, we applied it to the sandwich assay of C-reactive protein (CRP), α-fetoprotein (AFP) and prostate-specific antigen (PSA), a cardiac and inflammation marker, tumors and prostate cancer markers, respectively. For detection of disease markers, we confirmed the chip provides rapid analysis (total assay time of about 4 min) with high sensitivity, it is easy-to-use (no special skills are needed), and it uses small volumes of the sample and reagent (0.25 µL each). Moreover, multiplex assay for three biomarkers was also possible. Additionally, the immuno-pillar chip has a big advantage of having hardly any influence on the assay results even if the introduction quantities of the sample or reagents are different.
    Lab on a Chip 10/2010; 10(24):3335-40. DOI:10.1039/c0lc00241k · 5.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an application of a novel DNA separation matrix, cholesterol-bearing pullulan (CHP) nanogels, for microchip electrophoresis. The solution of the CHP showed a unique phase transition around 30 mg∕ml and formed gel phase over this critical concentration. This gel phase consists of the weak hydrophobic interactions between the cholesterols could be easily deformed by external forces, and thus, loading process of the CHP nanogels into microchannels became easier. The high concentration of the CHP nanogels provided excellent resolutions especially for small DNA fragments from 100 to 1500 bp. The separation mechanism was discussed based on Ogston and Reptation models which had developed in gels or polymer solutions. The result of a single molecule imaging gave us an insight of the separation mechanism and the nanogel structures as well.
    Biomicrofluidics 09/2010; 4(3):32210. DOI:10.1063/1.3479997 · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The various potential factors affecting the performance of nanopillar chips on DNA separation were investigated from the viewpoints of both numerical calculations and actual experiments. To yield higher performance and replace the conventional DNA separation techniques such as microchip electrophoresis, the phenomenon specific to the nanopillar chips should be deeply understood. In this paper, although various factors affecting the performance of the nanopillar chips are considered, we focused on the effect of electroosmotic flow, which is particularly noticeable in quartz-made nanopillar chips. High-resolution separation of DNA was realized when an electroosmotic flow was suppressed by simply using a higher concentration of buffer, but DNA separation failed in the presence of an electroosmotic flow. It was confirmed from the numerical simulations and the direct observations that the deformation of DNA band during the injection process was induced by electroosmotic flow and consequently led to a poor resolution.
    Israel Journal of Chemistry (Online) 03/2010; 47(2):161 - 169. DOI:10.1560/IJC.47.2.161 · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA separation technologies combined with micro- and nanofabrication technologies found a breakthrough in genotyping and DNA sequencing. This tutorial review outlines the fabrication technologies for nano-scaled structures inside microchannels and how the precisely designed structures contribute to obtaining higher performances in DNA separations from the viewpoint of the fabrication process, "top-down" nanofabrication and "bottom-up" molecular self-assembly approaches. It was found that these nanofabricated structures generated the unique separation modes that could not be achieved by random-sized pores of conventional gel or polymer systems. Furthermore, it was found that nanoscale-specific phenomena such as electroosmotic flow should be taken into consideration for further development of nanofabricated structures in DNA analysis. These separation technologies will contribute as a core technology for a future integrated biomolecule anlaysis chip.
    Chemical Society Reviews 03/2010; 39(3):948-56. DOI:10.1039/b900410f · 30.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantum dots (QDs) have been used to study the effects of fluorescent probes for biomolecules and cell imaging. Adipose tissue-derived stem cells, which carry a relatively lower donor site morbidity, while yielding a large number of stem cells at harvest, were transduced with QDs using the octa-arginine peptide (R8) cell-penetrating peptide (CPP). The concentration ratio of QDs:R8 of 1 x 10(4) was optimal for delivery into ASCs. No cytotoxicity was observed in ASCs transduced with less than 16 nM of QDs655. In addition, >80% of the cells could be labeled within 1 h and the fluorescent intensity was maintained at least for 2 weeks. The ASCs transduced with QDs using R8 could be differentiated into both adipogenic and osteogenic cells, thus suggesting that the cells maintained their stem cell potency. The ASCs labeled with QDs using R8 were further transplanted subcutaneously into the backs of mice or into mice through the tail vein. The labeled ASCs could be imaged with good contrast using the Maestro in vivo imaging system. These data suggested that QD labeling using R8 could be utilized for the imaging of ASCs.
    Biomaterials 02/2010; 31(14):4094-103. DOI:10.1016/j.biomaterials.2010.01.134 · 8.31 Impact Factor

Publication Stats

1k Citations
546.65 Total Impact Points

Institutions

  • 2006–2014
    • Nagoya University
      • Graduate School of Engineering
      Nagoya, Aichi, Japan
  • 2010
    • Hokkaido University
      • Graduate School of Pharmaceutical Sciences
      Sapporo-shi, Hokkaido, Japan
  • 2007
    • Uppsala University
      Uppsala, Uppsala, Sweden
  • 2000–2007
    • The University of Tokushima
      • • Graduate School of Pharmaceutical Sciences
      • • Department of Medicinal Biochemistry
      • • Faculty of Pharmaceutical Sciences
      Tokusima, Tokushima, Japan
  • 2004
    • Japan Science and Technology Agency (JST)
      Edo, Tōkyō, Japan