Ignacio Moriyón

Universidad de Navarra, Iruña, Navarre, Spain

Are you Ignacio Moriyón?

Claim your profile

Publications (124)466.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.
    Critical reviews in microbiology. 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current serological tests for swine brucellosis detect antibodies to the Brucella O-polysaccharide (O/PS). However, when infections by bacteria carrying cross-reacting O/PS occur, these tests suffer from false positive serological reactions (FPSR), and the skin test with Brucella soluble protein extracts is the best diagnostic alternative to differentiate true Brucella suis infections from FPSR in pigs. Since this test has been seldom used in B. suis infected swine, the clinical and histological features involved have not been described properly. Here, we describe the clinical and histological events in B. suis biovar 2 infected pigs skin tested with a cytosoluble O/PS free protein extract from rough Brucella abortus Tn5::per mutant. A similar extract from rough Ochrobactrum intermedium was also used for comparative purposes. No relevant differences were evidenced between the homologous and heterologous allergens, and the main clinical feature was an elevated area of the skin showing different induration degrees. Moreover, an important vascular reaction with hyperemia and haemorrhage was produced in most infected sows 24-48h after inoculation, thus facilitating the clinical interpretation of positive reactions. Histologically, combined immediate (type III) and delayed (type IV) hypersensitivity reactions were identified as the most relevant feature of the inflammatory responses produced. Copyright © 2014 Elsevier B.V. All rights reserved.
    Veterinary Immunology and Immunopathology 11/2014; · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.
    Veterinary research. 07/2014; 45(1):72.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nigeria is the most populous country in Africa, has a large proportion of the world's poor livestock keepers, and is a hotspot for neglected zoonoses. A review of the 127 accessible publications on brucellosis in Nigeria reveals only scant and fragmented evidence on its spatial and temporal distribution in different epidemiological contexts. The few bacteriological studies conducted demonstrate the existence of Brucella abortus in cattle and sheep, but evidence for B. melitensis in small ruminants is dated and unclear. The bulk of the evidence consists of seroprevalence studies, but test standardization and validation are not always adequately described, and misinterpretations exist with regard to sensitivity and/or specificity and ability to identify the infecting Brucella species. Despite this, early studies suggest that although brucellosis was endemic in extensive nomadic systems, seroprevalence was low, and brucellosis was not perceived as a real burden; recent studies, however, may reflect a changing trend. Concerning human brucellosis, no studies have identified the Brucella species and most reports provide only serological evidence of contact with Brucella in the classical risk groups; some suggest brucellosis misdiagnoses as malaria or other febrile conditions. The investigation of a severe outbreak that occurred in the late 1970s describes the emergence of animal and human disease caused by the settling of previously nomadic populations during the Sahelian drought. There appears to be an increasing risk of re-emergence of brucellosis in sub-Saharan Africa, as a result of the co-existence of pastoralist movements and the increase of intensive management resulting from growing urbanization and food demand. Highly contagious zoonoses like brucellosis pose a threat with far-reaching social and political consequences.
    PLoS Neglected Tropical Diseases 07/2014; 8(7):e3008. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites, and thus are able to adjust their metabolism to the extra and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly known and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatases (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK) and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of mutants ΔppdK and Δmae was severely impaired and growth of the double Δfbp-ΔglpX mutant was reduced. In macrophages, only ΔppdK and Δmae showed reduced multiplication, and studies with ΔppdK confirmed that it reached the replicative niche. Similarly, only ΔppdK and Δmae were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6 C (and 5 C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt.
    Journal of bacteriology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of B. abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure.
    Microbial Pathogenesis 06/2014; · 1.97 Impact Factor
  • Source
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of B. abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure.
    Microbial Pathogenesis 01/2014; · 1.97 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Swine brucellosis by Brucella suis biovar 2 is an emerging disease whose control is based on serological testing and culling. However, current serological tests detect antibodies to the O-polysaccharide (O/PS) moiety of Brucella smooth lipopolysaccharide (S-LPS), and thus lack specificity when infections by Yersinia enterocolitica O:9 and other gram-negative bacteria carrying cross-reacting O/PS occur. The skin test with the protein-rich brucellin extract obtained from rough B. melitensis B115 is assumed to be specific for discriminating these false positive serological reactions (FPSR). However, B115 strain, although unable to synthesize S-LPS, accumulates O/PS internally, which could cause diagnostic problems. Since the brucellin skin test has been seldom used in pigs and FPSR are common in these animals, we assessed its performance using cytosoluble protein extracts obtained from B. abortus rough mutants in manBcore or per genes (critical for O/PS biosynthesis) and B. melitensis B115. The diagnostic sensitivity and specificity were determined in B. suis biovar 2 culture positive and brucellosis free sows, and apparent prevalence in sows of unknown individual bacteriological and serological status belonging to B. suis biovar 2 naturally infected herds. Moreover, the specificity in discriminating brucellosis from FPSR was assessed in brucellosis free boars showing FPSR. The skin test with B. abortus ΔmanBcore and B. melitensis B115 allergens performed similarly, and the former one resulted in 100% specificity when testing animals showing FPSR in indirect ELISA, Rose Bengal and complement fixation serological tests. We conclude that O/PS-free genetically defined mutants represent an appropriate alternative to obtain Brucella protein extracts for diagnosing swine brucellosis.
    Veterinary Microbiology 11/2013; · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucella melitensis Rev 1 is the best vaccine available for the prophylaxis of small ruminant brucellosis and, indirectly, for reducing human brucellosis. However, Rev 1 shows anomalously high rates of spontaneous dissociation from smooth (S) to rough (R) bacteria, the latter being inefficacious as vaccines. This S-R instability results from the loss of the O-polysaccharide. To overcome this problem, we investigated whether some recently described mechanisms promoting mutations in O-polysaccharide genes were involved in Rev 1 S-R dissociation. We found that a proportion of Rev 1 R mutants result from genome rearrangements affecting the wbo O-polysaccharide loci of genomic island GI-2 and the wbkA O-polysaccharide glycosyltransferase gene of the wbk region. Accordingly, we mutated the GI-2 int gene and the wbk IS transposase involved in those arrangements, and found that these Rev 1 mutants maintained the S phenotype and showed lower dissociation levels. Combining these two mutations resulted in a strain (Rev 2) displaying a 95% decrease in dissociation with respect to parental Rev 1 under conditions promoting dissociation. Rev 2 did not differ from Rev 1 in the characteristics used in Rev 1 typing (growth rate, colonial size, reactivity with O-polysaccharide antibodies, phage, dye and antibiotic susceptibility). Moreover, Rev 2 and Rev 1 showed similar attenuation and afforded similar protection in the mouse model of brucellosis vaccines. We conclude that mutations targeting genes and DNA sequences involved in spontaneous O-polysaccharide loss enhance the stability of a critical vaccine phenotype and complement the empirical stabilization precautions taken during S Brucella vaccine production.
    Veterinary Research 10/2013; 44(1):105. · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brucellae are Gram-negative bacteria that cause an important zoonosis. Studies with the main Brucella species have shown that the O-antigens of the Brucella smooth lipopolysaccharide are α-(1→2) and α-(1→3)-linked N-formyl-perosamine polysaccharides that carry M, A and C (A = M, A>M and A<M) epitopes relevant in serodiagnosis and typing. We report that, in contrast to the B. suis biovar 1 O-antigen used as a reference or to all described Brucella O-antigens, B. suis biovar 2 O-antigen failed to bind monoclonal antibodies of C (A = M), C (M>A) and M specificities. However, the biovar 2 O-antigen bound monoclonal antibodies to the Brucella A epitope, and to the C/Y epitope shared by brucellae and Yersinia enterocolitica O:9, a bacterium that carries an N-formyl-perosamine O-antigen in exclusively α-(1→2)-linkages. By (13)C NMR spectroscopy, B. suis biovar 1 but not B. suis biovar 2 or Y. enterocolitica O:9 polysaccharide showed the signal characteristic of α-(1→3)-linked N-formyl-perosamine, indicating that biovar 2 may altogether lack this linkage. Taken together, the NMR spectroscopy and monoclonal antibody analyses strongly suggest a role for α-(1→3)-linked N-formyl-perosamine in the C (A = M) and C (M>A) epitopes. Moreover, they indicate that B. suis biovar 2 O-antigen lacks some lipopolysaccharide epitopes previously thought to be present in all smooth brucellae, thus representing a new brucella serovar that is M-negative, C-negative. Serologically and structurally this new serovar is more similar to Y. enterocolitica O:9 than to other brucellae.
    PLoS ONE 01/2013; 8(1):e53941. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+) T and CD8(+) T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.
    PLoS ONE 01/2013; 8(2):e55117. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gram-negative bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a worldwide-distributed zoonotic disease that represents a serious problem for animal and human health. There is no human-to-human contagion and, since there is no human vaccine, animal vaccination is essential to control brucellosis. However, current vaccines (all developed empirically) do not provide 100% protection and are infectious in humans. Attempts to generate new vaccines by obtaining mutants lacking the lipopolysaccharide O-polysaccharide, in purine metabolism or in Brucella type IV secretion system have not been successful. Here we propose a new approach to develop brucellosis vaccines based on the concept that Brucella surface molecules evade efficient detection by innate immunity, thus delaying protective Th1 responses and opening a time window to reach sheltered intracellular compartments. We showed recently that a branch of the core oligosaccharide section of Brucella lipopolysaccharide hampers recognition by TLR4-MD2. Mutation of glycosyltransferase WadC, involved in the synthesis of this branch, results in a lipopolysaccharide that, while keeping the O-polysaccharide essential for optimal protection, shows a truncated core, is more efficiently recognized by MD2 and triggers an increased cytokine response. In keeping with this, the wadC mutant is attenuated in dendritic cells and mice. In the mouse model of brucellosis vaccines, the B. abortus wadC mutant conferred protection similar to that provided by S19, the best cattle vaccine available. The properties of the wadC mutant provide the proof of concept for this new approach and open the way for more effective brucellosis vaccines.
    Microbial Pathogenesis 12/2012; · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8(+) T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4(+) and CD8(+) T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4(+) T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies.
    PLoS Pathogens 11/2012; 8(11):e1002983. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1(T) and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1(T) and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1(T) and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1(T) maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. IMPORTANCE: This report examines differences between genomes from four new Brucella strains and those from the classic Brucella spp. Our results show that the four new strains are outliers with respect to the previously known Brucella strains and yet are part of the genus, forming two new clades. The analysis revealed important information about the evolution and survival mechanisms of Brucella species, helping reshape our knowledge of this important zoonotic pathogen. One discovery of special importance is that one of the strains, BO2, produces an O-antigen distinct from any that has been seen in any other Brucella isolates to date.
    mBio 10/2012; 3(5):e00246-12. · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
    PLoS Pathogens 05/2012; 8(5):e1002675. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model.
    Veterinary Research 04/2012; 43(1):29. · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brucellae are Gram-negative pathogens that cause brucellosis, a zoonosis of worldwide importance. The genus Brucella includes smooth and rough species that differ in that they carry smooth and rough lipopolysaccharides, respectively. Brucella abortus, B. melitensis, and B. suis are typical smooth species. However, these smooth brucellae dissociate into rough mutants devoid of the lipopolysaccharide O-polysaccharide, a major antigen and a virulence determinant encoded in regions wbo (included in genomic island-2) and wbk. We demonstrate here the occurrence of spontaneous recombination events in those three Brucella species leading to the deletion of a 5.5-kb fragment carrying the wbkA glycosyltranferase gene and to the appearance of rough mutants. Analysis of the recombination intermediates suggested homologous recombination between the ISBm1 insertion sequences flanking wbkA as the mechanism generating the deletion. Excision of wbkA was reduced but not abrogated in a recA-deficient mutant, showing the existence of both RecA-dependent and -independent processes. Although the involvement of the ISBm1 copies flanking wbkA suggested a transpositional event, the predicted transpositional joint could not be detected. This absence of detectable transposition was consistent with the presence of polymorphism in the inverted repeats of one of the ISBm1 copies. The spontaneous excision of wbkA represents a novel dissociation mechanism of smooth brucellae that adds to the previously described excision of genomic island-2. This ISBm1-mediated wbkA excision and the different %GC levels of the excised fragment and of other wbk genes suggest that the Brucella wbk locus is the result of at least two horizontal acquisition events.
    Journal of bacteriology 02/2012; 194(8):1860-7. · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The brucellae are facultative intracellular pathogens of mammals that are transmitted by contact with infected animals or contaminated materials. Several major lipidic components of the brucella cell envelope are imperfectly recognized by innate immunity, thus contributing to virulence. These components carry large proportions of acyl chains of lactobacillic acid, a long chain cyclopropane fatty acid (CFA). CFAs result from addition of a methylene group to unsaturated acyl chains and contribute to resistance to acidity, dryness and high osmolarity in many bacteria and to virulence in mycobacteria. We examined the role of lactobacillic acid in Brucella abortus virulence by creating a mutant in ORF BAB1_0476, the putative CFA synthase gene. The mutant did not incorporate [(14)C]methyl groups into lipids, lacked CFAs and synthesized the unsaturated precursors, proving that BAB1_0476 actually encodes a CFA synthase. BAB1_0476 promoter-luxAB fusion studies showed that CFA synthase expression was promoted by acid pH and high osmolarity. The mutant was not attenuated in macrophages or mice, strongly suggesting that CFAs are not essential for B. abortus intracellular life. However, when the mutant was tested under high osmolarity on agar and acid pH, two conditions likely to occur on contaminated materials and fomites, they showed reduced ability to grow or survive. Since CFA synthesis entails high ATP expenses and brucellae produce large proportions of lactobacillic acyl chains, we speculate that the CFA synthase has been conserved because it is useful for survival extracellularly, thus facilitating persistence in contaminated materials and transmission to new hosts.
    Microbiology 01/2012; 158(Pt 4):1037-44. · 3.06 Impact Factor

Publication Stats

3k Citations
466.87 Total Impact Points

Institutions

  • 1985–2014
    • Universidad de Navarra
      • • Department of Microbiology and Parasitology
      • • Department of Urology
      • • School of Medicine
      Iruña, Navarre, Spain
  • 2006–2013
    • Aix-Marseille Université
      • Centre d'Immunologie de Marseille-Luminy (UMR_S 1104 UMR 7280 CIML)
      Marsiglia, Provence-Alpes-Côte d'Azur, France
  • 2007–2012
    • National University of Costa Rica
      • Escuela de Medicina Veterinaria
      Heredia, Provincia de Heredia, Costa Rica
  • 2010
    • Hannover Medical School
      Hanover, Lower Saxony, Germany
    • Clínica Universidad de Navarra
      Madrid, Madrid, Spain
  • 2000–2010
    • Research Center Borstel
      • Division of Biophysics
      Borstel, Lower Saxony, Germany
  • 2009
    • French National Institute for Agricultural Research
      • Centre de Recherche de Tours
      Lutetia Parisorum, Île-de-France, France
  • 2005–2009
    • Centro de Investigación y Tecnología Agroalimentaria de Aragón
      Caesaraugusta, Aragon, Spain
    • Centre d'Immunologie de Marseille-Luminy
      Marsiglia, Provence-Alpes-Côte d'Azur, France
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France
  • 1987–2007
    • University of Costa Rica
      • Centro de Investigación en Biología Celular y Molecular (CIBCM)
      San José, San José, Costa Rica
  • 1999
    • University of Turku
      • Department of Medical Biochemistry and Genetics
      Turku, Western Finland, Finland
  • 1993
    • University of Zaragoza
      Caesaraugusta, Aragon, Spain
  • 1992
    • University of California, Berkeley
      • Department of Molecular and Cell Biology
      Berkeley, California, United States
  • 1989
    • Cornell University
      Ithaca, New York, United States
  • 1983
    • University of Wisconsin–Madison
      Madison, Wisconsin, United States