Fernando Suarez Saiz

University Health Network, Toronto, Ontario, Canada

Are you Fernando Suarez Saiz?

Claim your profile

Publications (7)41.46 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Evasion of death receptor ligand-induced apoptosis represents an important contributor to cancer development and progression. Therefore, molecules that restore sensitivity to death receptor stimuli would be important tools to better understand this biological pathway and potential leads for therapeutic adjuncts. Previously, the small-molecule 4-(4-chloro-2-methylphenoxy)-N-hydroxybutanamide (that we propose be named droxinostat) was identified as a chemical sensitizer to death receptor stimuli, decreasing the expression of the caspase-8 inhibitor FLIP. However, the direct targets of droxinostat were unknown. To better understand the mechanism of action of droxinostat and highlight new strategies to restore sensitivity to death receptor ligands, we analyzed changes in gene expression using the Connectivity Map after treating cells with droxinostat. Changes in gene expression after droxinostat treatment resembled changes observed after treatment with histone deacetylase (HDAC) inhibitors. Therefore, we examined the effects of droxinostat on HDAC activity and showed that it selectively inhibited HDAC3, HDAC6, and HDAC8 and that inhibition of these HDACs was functionally important for its ability to sensitize cells to death ligands. Thus, we have identified a selective HDAC inhibitor and showed that selective HDAC inhibition sensitizes cells to death ligands, thereby highlighting a new mechanism to overcome resistance to death receptor ligands.
    Molecular Cancer Therapeutics 01/2010; 9(1):246-56. · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evasion of death receptor ligand-induced apoptosis is an important contributor to cancer development and progression. Therefore, molecules that restore sensitivity to death receptor stimuli would be important tools to better understand this biological pathway and potential leads for therapeutic adjuncts. Previously, the small-molecule N-[4-chloro-3-(trifluoromethyl)phenyl]-3-oxobutanamide (fasentin) was identified as a chemical sensitizer to the death receptor stimuli FAS and tumor necrosis factor apoptosis-inducing ligand, but its mechanism of action was unknown. Here, we determined that fasentin alters expression of genes associated with nutrient and glucose deprivation. Consistent with this finding, culturing cells in low-glucose medium recapitulated the effects of fasentin and sensitized cells to FAS. Moreover, we showed that fasentin inhibited glucose uptake. Using virtual docking studies with a homology model of the glucose transport protein GLUT1, fasentin interacted with a unique site in the intracellular channel of this protein. Additional chemical studies with other GLUT inhibitors and analogues of fasentin supported a role for partial inhibition of glucose transport as a mechanism to sensitize cells to death receptor stimuli. Thus, fasentin is a novel inhibitor of glucose transport that blocks glucose uptake and highlights a new mechanism to sensitize cells to death ligands.
    Molecular Cancer Therapeutics 12/2008; 7(11):3546-55. · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although intensive chemotherapy may improve survival in older people with acute myeloid leukemia (AML) without adverse cytogenetics, its impact on quality of life (QOL) is mixed and most patients complain of fatigue up to 6 months after diagnosis. Little information is available on longer-term QOL outcomes. We prospectively followed 20 patients age 60 or older with AML who provided QOL data more than 6 months after diagnosis. Over the first 6 months, there were clinically important improvements in global health, role function, social function, and emotional function. Physical function and cognitive function were stable over time. Over the next 6 months, social function and fatigue improved, and other domains remained stable. Achievement of complete remission appeared to be associated with improvements in global health, physical function, and role function without negatively affecting other health domains. This information may aid discussions with patients about treatment.
    Critical reviews in oncology/hematology 10/2008; 69(2):168-74. · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic helix-loop-helix (bHLH) transcription factor family contains key regulators of cellular proliferation and differentiation as well as the suspected oncoproteins Tal1 and Lyl1. Tal1 and Lyl1 are aberrantly over-expressed in leukemia as a result of chromosomal translocations, or other genetic or epigenetic events. Protein-protein and protein-DNA interactions described so far are mediated by their highly homologous bHLH domains, while little is known about the function of other protein domains. Hetero-dimers of Tal1 and Lyl1 with E2A or HEB, decrease the rate of E2A or HEB homo-dimer formation and are poor activators of transcription. In vitro, these hetero-dimers also recognize different binding sites from homo-dimer complexes, which may also lead to inappropriate activation or repression of promoters in vivo. Both mechanisms are thought to contribute to the oncogenic potential of Tal1 and Lyl1. Despite their bHLH structural similarity, accumulating evidence suggests that Tal1 and Lyl1 target different genes. This raises the possibility that domains flanking the bHLH region, which are distinct in the two proteins, may participate in target recognition. Here we report that CREB1, a widely-expressed transcription factor and a suspected oncogene in acute myelogenous leukemia (AML) was identified as a binding partner for Lyl1 but not for Tal1. The interaction between Lyl1 and CREB1 involves the N terminal domain of Lyl1 and the Q2 and KID domains of CREB1. The histone acetyl-transferases p300 and CBP are recruited to these complexes in the absence of CREB1 Ser 133 phosphorylation. In the Id1 promoter, Lyl1 complexes direct transcriptional activation. We also found that in addition to Id1, over-expressed Lyl1 can activate other CREB1 target promoters such as Id3, cyclin D3, Brca1, Btg2 and Egr1. Moreover, approximately 50% of all gene promoters identified by ChIP-chip experiments were jointly occupied by CREB1 and Lyl1, further strengthening the association of Lyl1 with Cre binding sites. Given the newly recognized importance of CREB1 in AML, the ability of Lyl1 to modulate promoter responses to CREB1 suggests that it plays a role in the malignant phenotype by occupying different promoters than Tal1.
    Biochimica et Biophysica Acta 04/2008; 1783(3):503-17. · 4.66 Impact Factor
  • Source
    L Yang, Y Han, F Suarez Saiz, F Saurez Saiz, M D Minden
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wilms' tumor 1 (WT1) gene encodes a transcription factor important for normal cellular development and cell survival. The initial discovery of WT1 as the causative gene in an autosomal-recessive condition identified it as a tumor suppressor gene whose mutations are associated with urogenital disease and the development of kidney tumors. However, this view is not in keeping with the frequent finding of wild-type, full-length WT1 in human leukemia, breast cancer and several other cancers including the majority of Wilms' tumors. Rather, these observations suggest that in those conditions, WT1 has an oncogenic role in tumor formation. In this review, we explore the literature supporting both views of WT1 in human cancer and in particular human leukemias. To understand the mechanism by which WT1 can do this, we will also examine its functional activity as a transcription factor and the influence of protein partners on its dual behavior.
    Leukemia 06/2007; 21(5):868-76. · 10.16 Impact Factor
  • Chapter: Leukemias
    Patricia Disperati, Fernando J. Suarezā€Saiz, Haytham Khoury, Mark D. Minden
    TNM Online, 07/2006; , ISBN: 9780471420194
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute myeloblastic leukemia (AML) may be classified in a number of ways. Using the French American British classification, the M3 form of the disease or acute promyelocytic leukemia (APL) has been found to be sensitive in vitro and in vivo to the retinoid all trans retinoic acid (ATRA). The mechanism for this is by restoration of normal gene expression through the release of histone deacetylase complexes (HDACs). In contrast to APL, other forms of AML are either nonresponsive or show blunted responses to ATRA. We evaluated if the inhibitor of HDAC activity, valproic acid (VPA), could mimic or enhance retinoid sensitivity in the AML cell line, OCI/AML-2, and clinical samples derived from patients with AML. An Affymetrix GeneChip experiment demonstrated that VPA modulated the expression of numerous genes in OCI/AML-2 cells that were not affected by ATRA including p21, a retinoid responsive gene in APL. VPA induced p21 expression in OCI/AML-2 cells and the majority of the AML samples tested; this was associated with cell cycle arrest and apoptosis not seen with ATRA alone. The addition of ATRA to VPA accentuated many of these responses, supporting the potential beneficial combination of these drugs in the treatment of AML.
    Leukemia 08/2005; 19(7):1161-8. · 10.16 Impact Factor