Keiko Matsuda

Keio University, Edo, Tōkyō, Japan

Are you Keiko Matsuda?

Claim your profile

Publications (29)155.57 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Of the two members of the δ subfamily of ionotropic glutamate receptors, GluD2 is exclusively expressed at parallel fiber-Purkinje cell (PF-PC) synapses in the cerebellum and regulates their structural and functional connectivity. However, little is known to date regarding cellular and synaptic expression of GluD1 and its role in synaptic circuit formation. In the present study, we investigated this issue by producing specific and sensitive histochemical probes for GluD1 and analyzing cerebellar synaptic circuits in GluD1-knock-out mice. GluD1 was widely expressed in the adult mouse brain, with high levels in higher brain regions, including the cerebral cortex, striatum, limbic regions (hippocampus, nucleus accumbens, lateral septum, bed nucleus stria terminalis, lateral habenula, and central nucleus of the amygdala), and cerebellar cortex. In the cerebellar cortex, GluD1 mRNA was expressed at the highest level in molecular layer interneurons and its immunoreactivity was concentrated at PF synapses on interneuron somata. In GluD1-knock-out mice, the density of PF synapses on interneuron somata was significantly reduced and the size and number of interneurons were significantly diminished. Therefore, GluD1 is common to GluD2 in expression at PF synapses, but distinct from GluD2 in neuronal expression in the cerebellar cortex; that is, GluD1 in interneurons and GluD2 in PCs. Furthermore, GluD1 regulates the connectivity of PF-interneuron synapses and promotes the differentiation and/or survival of molecular layer interneurons. These results suggest that GluD1 works in concert with GluD2 for the construction of cerebellar synaptic wiring through distinct neuronal and synaptic expressions and also their shared synapse-connecting function.
    The Journal of neuroscience : the official journal of the Society for Neuroscience. 05/2014; 34(22):7412-24.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiation of pre- and postsynaptic sites is coordinated by reciprocal interaction across synaptic clefts. At parallel fiber (PF)-Purkinje cell (PC) synapses, dendritic spines are autonomously formed without PF influence. However, little is known about how presynaptic structural changes are induced and how they lead to differentiation of mature synapses. Here, we show that Cbln1 released from PFs induces dynamic structural changes in PFs by a mechanism that depends on postsynaptic glutamate receptor delta2 (GluD2) and presynaptic neurexin (Nrx). Time-lapse imaging in organotypic culture and ultrastructural analyses in vivo revealed that Nrx-Cbln1-GluD2 signaling induces PF protrusions that often formed circular structures and encapsulated PC spines. Such structural changes in PFs were associated with the accumulation of synaptic vesicles and GluD2, leading to formation of mature synapses. Thus, PF protrusions triggered by Nrx-Cbln1-GluD2 signaling may promote bidirectional maturation of PF-PC synapses by a positive feedback mechanism.
    Neuron 11/2012; 76(3):549-64. · 15.77 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: D-serine (D-Ser) is an endogenous co-agonist for NMDA receptors and regulates neurotransmission and synaptic plasticity in the forebrain. D-Ser is also found in the cerebellum during the early postnatal period. Although D-Ser binds to the δ2 glutamate receptor (GluD2, Grid2) in vitro, its physiological significance has remained unclear. Here we show that D-Ser serves as an endogenous ligand for GluD2 to regulate long-term depression (LTD) at synapses between parallel fibers and Purkinje cells in the immature cerebellum. D-Ser was released mainly from Bergmann glia after the burst stimulation of parallel fibers in immature, but not mature, cerebellum. D-Ser rapidly induced endocytosis of AMPA receptors and mutually occluded LTD in wild-type, but not Grid2-null, Purkinje cells. Moreover, mice expressing mutant GluD2 in which the binding site for D-Ser was disrupted showed impaired LTD and motor dyscoordination during development. These results indicate that glial D-Ser regulates synaptic plasticity and cerebellar functions by interacting with GluD2.
    Nature Neuroscience 04/2011; 14(5):603-11. · 15.25 Impact Factor
  • Source
    Keiko Matsuda, Michisuke Yuzaki
    [Show abstract] [Hide abstract]
    ABSTRACT: Cbln1 (a.k.a. precerebellin) is a unique bidirectional synaptic organizer that plays an essential role in the formation and maintenance of excitatory synapses between granule cells and Purkinje cells in the mouse cerebellum. Cbln1 secreted from cerebellar granule cells directly induces presynaptic differentiation and indirectly serves as a postsynaptic organizer by binding to its receptor, the δ2 glutamate receptor. However, it remains unclear how Cbln1 binds to the presynaptic sites and interacts with other synaptic organizers. Furthermore, although Cbln1 and its family members Cbln2 and Cbln4 are expressed in brain regions other than the cerebellum, it is unknown whether they regulate synapse formation in these brain regions. In this study, we showed that Cbln1 and Cbln2, but not Cbln4, specifically bound to its presynaptic receptor -α and β isoforms of neurexin carrying the splice site 4 insert [NRXs(S4+)] - and induced synaptogenesis in cerebellar, hippocampal and cortical neurons in vitro. Cbln1 competed with synaptogenesis mediated by neuroligin 1, which lacks the splice sites A and B, but not leucine-rich repeat transmembrane protein 2, possibly by sharing the presynaptic receptor NRXs(S4+). However, unlike neurexins/neuroligins or neurexins/leucine-rich repeat transmembrane proteins, the interaction between NRX1β(S4+) and Cbln1 was insensitive to extracellular Ca(2+) concentrations. These findings revealed the unique and general roles of Cbln family proteins in mediating the formation and maintenance of synapses not only in the cerebellum but also in various other brain regions.
    European Journal of Neuroscience 03/2011; 33(8):1447-61. · 3.75 Impact Factor
  • Keiko Matsuda, Michisuke Yuzaki
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellin was originally discovered as a Purkinje cell-specific peptide more than two decades ago. Later, its precursor protein precerebellin (Cbln1) was found to be produced in cerebellar granule cells. It has become increasingly clear that although the cerebellin peptide may have certain functions, Cbln1 is an actual signaling molecule that belongs to the C1q family. However, the precise function of Cbln1 has been unresolved. Cbln1 is released from granule cells, and disruption of the cbln1 gene in mice causes a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs; axons of granule cells) and results in cerebellar ataxia. The glutamate receptor δ2 (GluD2) is highly expressed on Purkinje cells' dendritic spines which make synapses with PFs. Although GluD2 was identified as a member of the ionotropic glutamate receptors more than 15 years ago, it has been referred to as an orphan receptor because its endogenous ligands are unclear. Interestingly, GluD2-null mice phenocopy cbln1-null mice precisely. Cbln1 and GluD2 have therefore been thought to participate in a common signaling pathway that is required for the formation of PF synapses. We recently established a direct ligand-receptor relationship between Cbln1 and GluD2. The Cbln1-GluD2 complex is located at the cleft of PF-Purkinje cell synapses and bidirectionally regulates both presynaptic and postsynaptic differentiation.
    The Cerebellum 06/2010; 11(1):78-84. · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cbln1, secreted from cerebellar granule cells, and the orphan glutamate receptor delta2 (GluD2), expressed by Purkinje cells, are essential for synapse integrity between these neurons in adult mice. Nevertheless, no endogenous binding partners for these molecules have been identified. We found that Cbln1 binds directly to the N-terminal domain of GluD2. GluD2 expression by postsynaptic cells, combined with exogenously applied Cbln1, was necessary and sufficient to induce new synapses in vitro and in the adult cerebellum in vivo. Further, beads coated with recombinant Cbln1 directly induced presynaptic differentiation and indirectly caused clustering of postsynaptic molecules via GluD2. These results indicate that the Cbln1-GluD2 complex is a unique synapse organizer that acts bidirectionally on both pre- and postsynaptic components.
    Science 04/2010; 328(5976):363-8. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lurcher (Lc) mice have served as a valuable model for neurodegeneration for decades. Although the responsible mutation was identified in genes encoding delta2 glutamate receptors (GluD2s), which are predominantly expressed in cerebellar Purkinje cells, how the mutant receptor (GluD2(Lc)) triggers cell death has remained elusive. Here, taking advantage of recent knowledge about the domain structure of GluD2, we reinvestigated Lc-mediated cell death, focusing on the "autophagic cell death" hypothesis. Although autophagy and cell death were induced by the expression of GluD2(Lc) in heterologous cells and cultured neurons, they were blocked by the introduction of mutations in the channel pore domain of GluD2(Lc) or by removal of extracellular Na(+). In addition, although GluD2(Lc) is reported to directly activate autophagy, mutant channels that are not associated with n-PIST (neuronal isoform of protein-interacting specifically with TC10)-Beclin1 still caused autophagy and cell death. Furthermore, cells expressing GluD2(Lc) showed decreased ATP levels and increased AMP-activated protein kinase (AMPK) activities in a manner dependent on extracellular Na(+). Thus, constitutive currents were likely necessary and sufficient to induce autophagy via AMPK activation, regardless of the n-PIST-Beclin1 pathway in vitro. Interestingly, the expression of dominant-negative AMPK suppressed GluD2(Lc)-induced autophagy but did not prevent cell death in heterologous cells. Similarly, the disruption of Atg5, a gene crucial for autophagy, did not prevent but rather aggravated Purkinje-cell death in Lc mice. Furthermore, calpains were specifically activated in Lc Purkinje cells. Together, these results suggest that Lc-mediated cell death was not caused by autophagy but necrosis with autophagic features both in vivo and in vitro.
    Journal of Neuroscience 02/2010; 30(6):2177-87. · 6.91 Impact Factor
  • Keiko Matsuda, Michisuke Yuzaki
    Neuroscience Research 01/2010; 68:e34. · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1(Asn) has a weaker affinity to glutamate than GRIA1(Ser), both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1(Asn) have a slower luteinizing hormone (LH) surge than cows with GRIA1(Ser). In addition, cows with GRIA1(Asn) possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1(Ser). Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy.
    PLoS ONE 01/2010; 5(11):e13817. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The delta2 glutamate receptor (GluRdelta2; GluD2), which is predominantly expressed on postsynaptic sites at parallel fiber (PF)-Purkinje cell synapses in the cerebellum, plays two crucial roles in the cerebellum: the formation of PF synapses and the regulation of long-term depression (LTD), a form of synaptic plasticity underlying motor learning. Although the induction of LTD and motor learning absolutely require signaling via the cytoplasmic C-terminal domain of GluD2, the mechanisms by which GluD2 regulates PF synaptogenesis have remained unclear. Here, we examined the role of the extracellular N-terminal domain (NTD) of GluD2 on PF synaptogenesis by injecting Sindbis virus carrying wild-type (GluD2(wt)) or mutant GluD2 into the subarachnoid supracerebellar space of GluD2-null mice. Remarkably, the expression of GluD2(wt), but not of a mutant GluD2 lacking the NTD (GluD2(DeltaNTD)), rapidly induced PF synapse formation and rescued gross motor dyscoordination in adult GluD2-null mice just 1 d after injection. In addition, although the kainate receptor GluR6 (GluK2) did not induce PF synaptogenesis, a chimeric GluK2 that contained the NTD of GluD2 (GluD2(NTD)-GluK2) did. Similarly, GluD2(wt) and GluD2(NTD)-GluK2, but not GluD2(DeltaNTD), induced synaptogenesis in heterologous cells in vitro. In contrast, LTD was restored in GluD2-null Purkinje cells expressing a mutant GluD2 lacking the NTD. These results indicate that the NTD of GluD2 is necessary and sufficient for the function of GluD2 in the regulation of PF-Purkinje cell synaptogenesis. Furthermore, our results suggest that GluD2 differently regulates PF synaptogenesis and cerebellar LTD through the extracellular NTD and the cytoplasmic C-terminal end, respectively.
    Journal of Neuroscience 06/2009; 29(18):5738-48. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is a unique molecule that is not only required for maintaining normal parallel fiber (PF)-Purkinje cell synapses, but is also capable of inducing new PF synapses in adult cerebellum. Although Cbln1 is reportedly released from granule cells, where and how Cbln1 binds in the cerebellum has remained largely unclear, partly because Cbln1 undergoes proteolysis to yield various fragments that are differentially detected by different antibodies. To circumvent this problem, we characterized the Cbln1-binding site using recombinant Cbln1. An immunohistochemical analysis revealed that recombinant Cbln1 preferentially bound to PF-Purkinje cell synapses in primary cultures and acute slice preparations in a saturable and replaceable manner. Specific binding was observed for intact Cbln1 that had formed a hexamer, but not for the N-terminal or C-terminal fragments of Cbln1 fused to other proteins. Similarly, mutant Cbln1 that had formed a trimer did not bind to the Purkinje cells. Immunoreactivity for the recombinant Cbln1 was observed in weaver cerebellum (which lacks granule cells) but was absent in pcd cerebellum (which lacks Purkinje cells), suggesting that the binding site was located on the postsynaptic sites of PF-Purkinje cell synapses. Finally, a subcellular fractionation analysis revealed that recombinant Cbln1 bound to the synaptosomal and postsynaptic density fractions. These results indicate that Cbln1, released from granule cells as hexamers, specifically binds to a putative receptor located at the postsynaptic sites of PF-Purkinje cell synapses, where it induces synaptogenesis.
    European Journal of Neuroscience 03/2009; 29(4):707-17. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cbln1 (a.k.a. precerebellin) is secreted from cerebellar granule cells as homohexamer or in heteromeric complexes with Cbln3. Cbln1 plays crucial roles in regulating morphological integrity of parallel fiber (PF)-Purkinje cell (PC) synapses and synaptic plasticity. Cbln1-knockout mice display severe cerebellar phenotypes that are essentially indistinguishable from those in glutamate receptor GluRdelta2-null mice, and include severe reduction in the number of PF-PC synapses and loss of long-term depression of synaptic transmission. To understand better the relationship between Cbln1, Cbln3 and GluRdelta2, we performed light and electron microscopic immunohistochemical analyses using highly specific antibodies and antigen-exposing methods, i.e. pepsin pretreatment for light microscopy and postembedding immunogold for electron microscopy. In conventional immunohistochemistry, Cbln1 was preferentially associated with non-terminal portions of PF axons in the molecular layer but rarely overlapped with Cbln3. In contrast, antigen-exposing methods not only greatly intensified Cbln1 immunoreactivity in the molecular layer, but also revealed its high accumulation in the synaptic cleft of PF-PC synapses. No such synaptic accumulation was evident at other PC synapses. Furthermore, Cbln1 now came to overlap almost completely with Cbln3 and GluRdelta2 at PF-PC synapses. Therefore, the convergence of all three molecules provides the anatomical basis for a common signaling pathway regulating circuit development and synaptic plasticity in the cerebellum.
    European Journal of Neuroscience 03/2009; 29(4):693-706. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although many synapse-organizing molecules have been identified in vitro, their functions in mature neurons in vivo have been mostly unexplored. Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is the most recently identified protein involved in synapse formation in the mammalian CNS. In the cerebellum, Cbln1 is predominantly produced and secreted from granule cells; cbln1-null mice show ataxia and a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs), the axon bundle of granule cells. Here, we show that application of recombinant Cbln1 specifically and reversibly induced PF synapse formation in dissociated cbln1-null Purkinje cells in culture. Cbln1 also rapidly induced electrophysiologically functional and ultrastructurally normal PF synapses in acutely prepared cbln1-null cerebellar slices. Furthermore, a single injection of recombinant Cbln1 rescued severe ataxia in adult cbln1-null mice in vivo by completely, but transiently, restoring PF synapses. Therefore, Cbln1 is a unique synapse organizer that is required not only for the normal development of PF-Purkinje cell synapses but also for their maintenance in the mature cerebellum both in vitro and in vivo. Furthermore, our results indicate that Cbln1 can also rapidly organize new synapses in adult cerebellum, implying its therapeutic potential for cerebellar ataxic disorders.
    Journal of Neuroscience 06/2008; 28(23):5920-30. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AP-4 is a member of the adaptor protein complexes, which control vesicular trafficking of membrane proteins. Although AP-4 has been suggested to contribute to basolateral sorting in epithelial cells, its function in neurons is unknown. Here, we show that disruption of the gene encoding the beta subunit of AP-4 resulted in increased accumulation of axonal autophagosomes, which contained AMPA receptors and transmembrane AMPA receptor regulatory proteins (TARPs), in axons of hippocampal neurons and cerebellar Purkinje cells both in vitro and in vivo. AP-4 indirectly associated with the AMPA receptor via TARPs, and the specific disruption of the interaction between AP-4 and TARPs caused the mislocalization of endogenous AMPA receptors in axons of wild-type neurons. These results indicate that AP-4 may regulate proper somatodendritic-specific distribution of its cargo proteins, including AMPA receptor-TARP complexes and the autophagic pathway in neurons.
    Neuron 04/2008; 57(5):730-45. · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The delta2 glutamate receptor (GluRdelta2) is predominantly expressed in Purkinje cells and plays crucial roles in cerebellar functions: GluRdelta2-/- mice display ataxia and impaired motor learning. In addition, long-term depression (LTD) at parallel fiber (PF)-Purkinje cell synapses is abrogated, and synapse formation with PFs and climbing fibers (CFs) is severely disturbed in GluRdelta2-/- Purkinje cells. Recently, we demonstrated that abrogated LTD was restored in GluRdelta2-/- Purkinje cells by the virus-mediated expression of the wild-type GluRdelta2 transgene (Tg(wt)) but not by that of mutant GluRdelta2 lacking the C-terminal seven residues to which several PDZ proteins bind (Tg(DeltaCT7)). These results indicated that the C terminus of GluRdelta2 conveys the signal(s) necessary for LTD. In contrast, other phenotypes of GluRdelta2-/- cerebellum, especially morphological abnormalities at PF and CF synapses, could not be rescued by virus-mediated transient expression. Thus, whether these phenotypes are mediated by the same signaling pathway remains unclear. To address these issues and to further delineate the function of GluRdelta2 in vivo, we generated transgenic mice that expressed Tg(DeltaCT7) on a GluRdelta2-/- background. Interestingly, although Tg(DeltaCT7) restored abnormal PF and CF synapse formation almost completely, it could not rescue abrogated LTD in GluRdelta2-/- Purkinje cells. Furthermore, although the gross motor discoordination of GluRdelta2-/- mice was restored, the cerebellar motor learning underlying delayed eyeblink conditioning remained impaired. These results indicate that LTD induction and motor learning are regulated by signaling via the C-terminal end of GluRdelta2, whereas other functions may be differentially regulated by other regions of GluRdelta2.
    Journal of Neuroscience 03/2008; 28(6):1460-8. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cbln1, a member of the C1q and tumor necrosis factor superfamily, plays crucial roles as a cerebellar granule cell-derived transneuronal regulator of synapse integrity and plasticity in Purkinje cells. Although other Cbln family members, Cbln2-Cbln4, have distinct spatial and temporal patterns of expression throughout the CNS, their biochemical and biological properties have remained largely uncharacterized. Here, we demonstrated that in mammalian heterologous cells, Cbln2 and Cbln4 were secreted as N-linked glycoproteins, like Cbln1. In contrast, despite the presence of a functional signal sequence, Cbln3 was not secreted when expressed alone but was retained in the endoplasmic reticulum (ER) or cis-Golgi because of its N-terminal domain. All members of the Cbln family formed not only homomeric but also heteromeric complexes with each other in vitro. Accordingly, when Cbln1 and Cbln3 were co-expressed in heterologous cells, a proportion of the Cbln1 proteins was retained in the ER or cis-Golgi; conversely, some Cbln3 proteins were secreted together with Cbln1. Similarly, in wild-type granule cells expressing Cbln1 and Cbln3, Cbln3 proteins were partially secreted and reached postsynaptic sites on Purkinje cell dendrites, while Cbln3 was almost completely degraded in cbln1-null granule cells. These results indicate that like Cbln1, Cbln2 and Cbln4 may also serve as transneuronal regulators of synaptic functions in various brain regions. Furthermore, heteromer formation between Cbln1 and Cbln3 in cerebellar granule cells may modulate each other's trafficking and signaling pathways; similarly, heteromerization of other Cbln family proteins may also have biological significance in other neurons.
    European Journal of Neuroscience 03/2007; 25(4):1049-57. · 3.75 Impact Factor
  • Neuroscience Research - NEUROSCI RES. 01/2007; 58.
  • Neuroscience Research - NEUROSCI RES. 01/2007; 58.
  • Neuroscience Research - NEUROSCI RES. 01/2007; 58.

Publication Stats

566 Citations
155.57 Total Impact Points

Institutions

  • 2006–2014
    • Keio University
      • Department of Physiology
      Edo, Tōkyō, Japan
  • 2002–2004
    • St. Jude Children's Research Hospital
      • Department of Developmental Neurobiology
      Memphis, TN, United States