Allison J Janocha

Cleveland Clinic, Cleveland, Ohio, United States

Are you Allison J Janocha?

Claim your profile

Publications (27)163.02 Total impact

  • Nitric Oxide 11/2014; 42C:110. DOI:10.1016/j.niox.2014.09.036 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: mTORC1 activation occurs frequently in cancers, yet clinical efficacy of rapalogs is limited due to the associated activation of upstream survival pathways. An alternative approach is to inhibit downstream of mTORC1; therefore, acquired resistance to fludarabine (Flu), a purine analog and anti-metabolite chemotherapy, active agent for chronic lymphocytic leukemia (CLL) was investigated. Elevated phospho-p70S6K (T389), an mTORC1 activation marker, predicted Flu resistance in a panel of B-cell lines, isogenic Flu-resistant (FluR) derivatives, and primary human CLL cells. Consistent with the anabolic role of mTORC1, FluR cells had higher rates of glycolysis and oxidative phosphorylation than Flu-sensitive (FluS) cells. Rapalogs (everolimus, rapamycin), induced moderate cell death in FluR and primary CLL cells, and everolimus significantly inhibited glycolysis and oxidative phosphorylation in FluR cells. Strikingly, the higher oxidative phosphorylation in FluR cells was not coupled to higher ATP synthesis. Instead it contributed primarily to an essential, dihydroorotate dehydrogenase (DHODH) catalyzed, step in de novo pyrimidine biosynthesis. mTORC1 promotes pyrimidine biosynthesis by p70S6 kinase-mediated phosphorylation of CAD (Ser1859) and favors S-phase cell cycle progression. We found increased phospho-CAD (S1859) and higher S-phase population in FluR cells. Pharmacological inhibition of de novo pyrimidine biosynthesis using N-phosphonacetyl-Laspartate (PALA) and leflunomide, RNAi-mediated knockdown of p70S6K, and inhibition of mitochondrial respiration were selectively cytotoxic to FluR, but not FluS cells. These results reveal a novel link between mTORC1-mediated metabolic reprogramming and Flu resistance identifying mitochondrial respiration and de novo pyrimidine biosynthesis as potential therapeutic targets. Implications: This study provides the first evidence for mTORC1/p70S6K-dependent regulation of pyrimidine biosynthesis in a relevant disease setting.
    Molecular Cancer Research 07/2014; 12(9). DOI:10.1158/1541-7786.MCR-14-0124 · 4.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The early biological impact of short-term mechanical ventilation on healthy lungs is unknown. The authors aimed to characterize the immediate tidal volume (VT)-related changes on lung injury biomarkers in patients with healthy lungs and low risk of pulmonary complications. Twenty-eight healthy patients for knee replacement surgery were prospectively randomized to volume-controlled ventilation with VT 6 (VT6) or 10 (VT10) ml/kg predicted body weight. General anesthesia and other ventilatory parameters (positive end-expiratory pressure, 5 cm H2O, FIO2, 0.5, respiratory rate titrated for normocapnia) were managed similarly in the two groups. Exhaled breath condensate and blood samples were collected for nitrite, nitrate, tumor necrosis factor-α, interleukins-1β, -6, -8, -10, -11, neutrophil elastase, and Clara Cell protein 16 measurements, at the onset of ventilation and 60 min later. No significant differences in biomarkers were detected between the VT groups at any time. The coefficient of variation of exhaled breath condensate nitrite and nitrate decreased in the VT6 but increased in the VT10 group after 60-min ventilation. Sixty-minute ventilation significantly increased plasma neutrophil elastase levels in the VT6 (35.2 ± 30.4 vs. 56.4 ± 51.7 ng/ml, P = 0.008) and Clara Cell protein 16 levels in the VT10 group (16.4 ± 8.8 vs. 18.7 ± 9.5 ng/ml, P = 0.015). Exhaled breath condensate nitrite correlated with plateau pressure (r = 0.27, P = 0.042) and plasma neutrophil elastase (r = 0.44, P = 0.001). Plasma Clara Cell protein 16 correlated with compliance (r = 0.34, P = 0.014). No tidal volume-related changes were observed in the selected lung injury biomarkers of patients with healthy lungs after 60-min ventilation. Plasma neutrophil elastase and plasma Clara Cell protein 16 might indicate atelectrauma and lung distention, respectively.
    Anesthesiology 05/2014; DOI:10.1097/ALN.0000000000000301 · 6.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Air-liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air-liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases.
    01/2014; DOI:10.1016/j.redox.2014.01.004
  • Blood 09/2013; 122(11):1989-91. DOI:10.1182/blood-2013-03-491068 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: Nebulization is a potential method for delivering therapeutic agents to lung grafts. Recent evidence suggests that nitrite may mitigate ischemia-reperfusion injury via a nitric oxide-dependent pathway. METHODS: Syngeneic orthotopic left lung transplantation was performed in rats after 7 hours of cold ischemia. Sodium nitrite (3 mg) or phosphate-buffered saline (controls) was delivered before procurement via nebulization. RESULTS: Nitrite treatment was associated with better oxygenation, lower peak airway pressure, lower wet/dry ratio, reduced myeloperoxidase level and macrophage infiltration, increased cyclic guanosine monophosphate (cGMP) levels, and decreased levels of interleukin 6, interleukin 1-β, inducible nitric oxide synthase, and intercellular adhesion molecule-1 at 2 hours after reperfusion. Treatment with 2-(4-carboxypheny)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger, reversed the beneficial effects of nitrite and decreased cGMP concentration in grafts. A dose-response curve of nitrite was performed at the following doses: 0.3 mg (N0.1), 3.0 mg (N1.0), 5.25 mg (N1.75), 7.5 mg (N2.5), and 15.0 mg (N5.0). All treatments, excluding N1.0, resulted in poorer oxygenation, higher peak airway pressures, and higher wet/dry ratio. Higher dosage groups (N1.75, N2.5, and N5.0) exhibited positive immunostaining of nitrotyrosine and increased the intensity of nitrotyrosine in immunoblotting. CONCLUSIONS: These data suggest that nebulized nitrite limits lung ischemia-reperfusion injury and may prove a clinically useful strategy but requires appropriate dosing to limit oxidative injury at high doses.
    The Journal of thoracic and cardiovascular surgery 11/2012; 145(4). DOI:10.1016/j.jtcvs.2012.04.006 · 3.41 Impact Factor
  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012
  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypobaric hypoxia occurs during ascent to higher altitude. In this observational study of healthy lowland dwellers, intracellular red-cell forms of nitric oxide, S-nitrosohemoglobin, and iron nitrosyl hemoglobin increased strikingly during ascent to 5050 m.
    New England Journal of Medicine 11/2011; 365(20):1942-4. DOI:10.1056/NEJMc1107887 · 54.42 Impact Factor
  • Journal of Cardiac Failure 08/2011; 17(8). DOI:10.1016/j.cardfail.2011.06.104 · 3.07 Impact Factor
  • American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado; 05/2011
  • American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado; 05/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterioles respond to hypoxia with constriction that raises vascular resistance and pulmonary artery blood pressure. The response is sustained indefinitely by the chronic hypoxia of high-altitude residence among highlanders of European and Andean descent, but not Tibetans. The objective of this study was to identify the consequences of lifelong hypoxia exposure for the pulmonary vasculature among Amhara high-altitude natives from Ethiopia. A three-way static group comparison tested for the effect of Amhara ancestry and high residence altitude on pulmonary hemodynamics measured using echocardiography in samples of 76 healthy adult Amhara lifelong residents at 3700 m, 54 Amhara lifelong residents at 1200 m, and 46 U.S. low-altitude residents at 282 m. Amhara at 3700 m had average Doppler-estimated pulmonary artery systolic pressure (tricuspid regurgitant gradient) of 27.9 ± 8.4 (SD) mm Hg as compared with 21.9 ± 4.0 among Amhara at low altitude and 16.5 ± 3.6 in the U.S. low-altitude reference sample. However, there was no residence altitude effect on pulmonary blood flow or vascular resistance. Amhara ancestry was associated with greater pulmonary artery systolic pressure and pulmonary blood flow, yet lower pulmonary vascular resistance. The Amhara at 3700 m had elevated pulmonary artery pressure, but without the elevated pulmonary vascular resistance characteristic of the classic model of the response to long-term hypoxia by the pulmonary vasculature. The elevated pressure among Amhara may be a consequence of high pulmonary blood flow regardless of altitude and represent a newly identified pattern of response.
    American Journal of Human Biology 03/2011; 23(2):168-76. DOI:10.1002/ajhb.21130 · 1.93 Impact Factor
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe pulmonary hypertension is irreversible and often fatal. Abnormal proliferation and resistance to apoptosis of endothelial cells (ECs) and hypertrophy of smooth muscle cells in this disease are linked to decreased mitochondria and preferential energy generation by glycolysis. We hypothesized this metabolic shift of pulmonary hypertensive ECs is due to greater hypoxia inducible-factor1alpha (HIF-1alpha) expression caused by low levels of nitric oxide combined with low superoxide dismutase activity. We show that cultured ECs from patients with idiopathic pulmonary arterial hypertension (IPAH-ECs) have greater HIF-1alpha expression and transcriptional activity than controls under normoxia or hypoxia, and pulmonary arteries from affected patients have increased expression of HIF-1alpha and its target carbonic anhydrase IX. Decreased expression of manganese superoxide dismutase (MnSOD) in IPAH-ECs paralleled increased HIF-1alpha levels and small interfering (SI) RNA knockdown of MnSOD, but not of the copper-zinc SOD, increased HIF-1 protein expression and hypoxia response element (HRE)-driven luciferase activity in normoxic ECs. MnSOD siRNA also reduced nitric oxide production in supernatants of IPAH-ECs. Conversely, low levels of a nitric oxide donor reduced HIF-1alpha expression in normoxic IPAH-ECs. Finally, mitochondria numbers increased in IPAH-ECs with knockdown of HIF-1alpha. These findings indicate that alterations of nitric oxide and MnSOD contribute to pathological HIF-1alpha expression and account for lower numbers of mitochondria in IPAH-ECs.
    American Journal Of Pathology 03/2010; 176(3):1130-8. DOI:10.2353/ajpath.2010.090832 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of nitric oxide synthase 2 (NOS2) in airway epithelial cells plays a key role in the innate host response to a wide variety of microbial agents and also participates in the generation of pathologic airway inflammation. Among the important signalling cascades that direct NOS2 gene expression are nuclear factor kappaB (NFkappaB) and interferon-gamma (IFNgamma)/signal transducer and activator of transcription 1 (STAT-1). Previous studies suggest activator protein-1 (AP-1), in particular c-Fos component of AP-1, influences NOS2 expression. We investigated the effect of c-Fos modulation using RNA interference siRNA on NOS2 gene expression. A549 cells stably transfected with a plasmid overexpressing a c-Fos siRNA construct (FOSi) resulted in a decrease of NOS2 protein inducibility by IFN gamma. In contrast, classical IFN gamma inducible signal transduction pathways interferon regulated factor-1 (IRF-1) and pSTAT-1 were activated at a similar magnitude in FOSi and control cells. DNA-protein binding assays showed that c-Fos binding was present in wild type cells, but reduced in FOSi clones. FOSi clones had activation of NFkappaB detectable by DNA-protein binding assays, which may have contributed to a decrease of NOS2 expression. Overall, these studies indicate that c-Fos is a requisite and specific component for inducible NOS2 expression.
    Nitric Oxide 04/2009; 20(3):143-9. DOI:10.1016/j.niox.2008.12.004 · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nasal polyposis is characterized by impaired regulation of nasal tissue growth and is associated with chronic inflammation, sinus infections, and low levels of nitric oxide (NO). Based on its critical role in mediating cell growth and antimicrobial function, decrease of NO levels has been implicated in the pathogenesis of nasal polyposis. We sought to evaluate mechanisms for the low NO level in polyposis, including factors regulating NO synthase (NOS) expression and activity and NO consumptive processes in nasal epithelial cells and nasal lavage fluid. Eighteen patients with nasal polyposis and 8 healthy control subjects were studied. Nasal brushings, nasal lavage fluid, and nasal biopsy specimens were collected and analyzed. NO metabolite levels (nitrite and nitrate) in nasal lavage fluid from patients with polyps were less than those in control subjects, but activation of signal transduction and inducer of transcription 1, which regulates inducible NOS gene expression and protein expression, was present at higher levels in polyp than in healthy control tissue. Levels of arginine, methylarginine, and endogenous NOS inhibitors were similar between polyp and control tissue. In contrast, superoxide dismutase activity of polyp tissues was lower than that seen in control tissue and associated with increased nitrotyrosine, a biomarker of oxidant consumptive products of NO. Taken together, these data suggest that the nasal polyp environment is characterized by abnormalities in NO metabolism that might predispose to altered regulation of tissue growth and infection. Identification of NO metabolic abnormalities might lead to novel treatments for sinonasal polyposis targeted against the pathways identified within this study.
    The Journal of allergy and clinical immunology 01/2008; 120(6):1346-53. DOI:10.1016/j.jaci.2007.07.067 · 12.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The low barometric pressure at high altitude causes lower arterial oxygen content among Tibetan highlanders, who maintain normal levels of oxygen use as indicated by basal and maximal oxygen consumption levels that are consistent with sea level predictions. This study tested the hypothesis that Tibetans resident at 4,200 m offset physiological hypoxia and achieve normal oxygen delivery by means of higher blood flow enabled by higher levels of bioactive forms of NO, the main endothelial factor regulating blood flow and vascular resistance. The natural experimental study design compared Tibetans at 4,200 m and U.S. residents at 206 m. Eighty-eight Tibetan and 50 U.S. resident volunteers (18-56 years of age, healthy, nonsmoking, nonhypertensive, not pregnant, with normal pulmonary function) participated. Forearm blood flow, an indicator of systemic blood flow, was measured noninvasively by using plethysmography at rest, after breathing supplemental oxygen, and after exercise. The Tibetans had more than double the forearm blood flow of low-altitude residents, resulting in greater than sea level oxygen delivery to tissues. In comparison to sea level controls, Tibetans had >10-fold-higher circulating concentrations of bioactive NO products, including plasma and red blood cell nitrate and nitroso proteins and plasma nitrite, but lower concentrations of iron nitrosyl complexes (HbFeIINO) in red blood cells. This suggests that NO production is increased and that metabolic pathways controlling formation of NO products are regulated differently among Tibetans. These findings shift attention from the traditional focus on pulmonary and hematological systems to vascular factors contributing to adaptation to high-altitude hypoxia.
    Proceedings of the National Academy of Sciences 11/2007; 104(45):17593-8. DOI:10.1073/pnas.0707462104 · 9.81 Impact Factor

Publication Stats

830 Citations
163.02 Total Impact Points

Institutions

  • 2007–2014
    • Cleveland Clinic
      • Department of Pathobiology
      Cleveland, Ohio, United States
    • Case Western Reserve University
      • • Skin Cancer Research Institute
      • • Department of Anthropology
      Cleveland, Ohio, United States
  • 2004–2012
    • Lerner Research Institute
      • Department of Cellular and Molecular Medicine
      Cleveland, Ohio, United States