Christoph Hock

University of Zurich, Zürich, Zurich, Switzerland

Are you Christoph Hock?

Claim your profile

Publications (183)883.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early uptake of [(11)C]-Pittsburgh Compound B (ePiB, 0-6 minutes) estimates cerebral blood flow. We studied ePiB in 13 PiB-negative and 10 PiB-positive subjects with mild cognitive impairment (MCI, n = 23) and 11 PiB-positive and 74 PiB-negative cognitively healthy elderly control subjects (HCS, n = 85) in 6 bilateral volumes of interest: posterior cingulate cortex (PCC), hippocampus (hipp), temporoparietal region, superior parietal gyrus, parahippocampal gyrus (parahipp), and inferior frontal gyrus (IFG) for the associations with cognitive status, age, amyloid deposition, and apolipoprotein E ε4-allele. We observed no difference in ePiB between PiB-positive and -negative subjects and carriers and noncarriers. EPiB decreased with age in PiB-positive subjects in bilateral superior parietal gyrus, bilateral temporoparietal region, right IFG, right PCC, and left parahippocampal gyrus but not in PiB-negative subjects. MCI had lower ePiB than HCS (left PCC, left IFG, and left and right hipp). Lowest ePiB values were found in MCI of 70 years and older, who also displayed high cortical PiB binding. This suggests that lowered regional cerebral blood flow indicated by ePiB is associated with age in the presence but not in the absence of amyloid pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Neurobiology of Aging 01/2015; 32(4). DOI:10.1016/j.neurobiolaging.2014.12.036 · 4.85 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of amyloid beta (Aβ) may occur during healthy aging and is a risk factor for Alzheimer Disease (AD). While individual Aβ-accumulation can be measured non-invasively using Pittsburgh Compund-B positron emission tomography (PiB-PET), Fluid-attenuated inversion recovery (FLAIR) is a Magnetic Resonance Imaging (MRI) sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR intensity.
    Frontiers in Aging Neuroscience 09/2014; 6(240). DOI:10.3389/fnagi.2014.00240 · 2.84 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biomarker potential of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) for the in vivo characterization of preclinical stages in Alzheimer's disease has not yet been explored. We measured GABA, glutamate + glutamine (Glx), and N-acetyl-aspartate (NAA) levels by single-voxel MEGA-PRESS magnetic resonance spectroscopy in the posterior cingulate cortex of 21 elderly subjects and 15 patients with amnestic mild cognitive impairment. Participants underwent Pittsburgh Compound B positron emission tomography, apolipoprotein E (APOE) genotyping, and neuropsychological examination. GABA, Glx, and NAA levels were significantly lower in patients. NAA was lower in Pittsburgh Compound B-positive subjects and APOE ε4 allele carriers. GABA, Glx, and NAA levels were positively correlated to CERAD word learning scores. Reductions in GABA, Glx, and NAA levels may serve as metabolic biomarkers for cognitive impairment in amnestic mild cognitive impairment. Because GABA and Glx do not seem to reflect amyloid β deposition or APOE genotype, they are less likely biomarker candidates for preclinical Alzheimer's disease.
    Neurobiology of Aging 07/2014; 36(1). DOI:10.1016/j.neurobiolaging.2014.07.030 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that increased cognitive intraindividual variability (IIV) across accuracy scores from tests representing different cognitive domains (across-domain IIV) might indicate prodromal Alzheimer's disease (AD). Although IIV has been proposed to index cognitive control processes, IIV across accuracy scores from cognitive control tasks (within-domain IIV) has not been examined in healthy controls subjects (HCS), mild cognitive impairment (MCI), and AD patients in a single comparative study. This study examines the discriminative properties of within-domain IIV, and across-domain IIV in 149 HCS, 31 MCI, and 26 AD. Three tasks representing different cognitive domains were identified to calculate across-domain IIV. Three other tasks representing cognitive control were identified to calculate within-domain IIV. The intraindividual standard deviation was calculated across accuracy scores. To compare IIV between groups, ANCOVAs with the covariates age, gender, education, and mean performance were computed. IIV scores in general were higher in AD vs. HCS (p < 0.01). Only across-domain IIV was higher in AD vs. MCI (p = 0.001), and only within-domain IIV was higher in MCI vs. HCS (p = 0.05). Within-domain IIV may constitute a cognitive marker for the detection of prodromal AD at the MCI stage, whereas across-domain IIV may detect beginning AD at the MCI stage.
    Frontiers in Aging Neuroscience 07/2014; 6:147. DOI:10.3389/fnagi.2014.00147 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Amnestic mild cognitive impairment (aMCI) patients demonstrate lower global network interactions. However, graph theory (GT) analysis has not been used to examine networks compromised by strong amyloid (A β) deposition, such as the default mode network (DMN). In addition, no study directly compared GT and functional connectivity (FC) analysis between healthy controls (HCS) and aMCI with respect to Aβ and APOE genotype. Based on the known structural and functional impairments in MCI, we hypothesize that FC and global network interactions are reduced in MCI and in subjects with Aβ load and ε4 allele presence. Methods: We compared 24 HCS to 15 matched aMCI by resting-state fMRI. FC (within the DMN) and GT (whole-brain) analyses were performed with the toolbox CONN at p<0.05 (corrected). Three group comparisons were examined: HCS versus aMCI, PiB- versus PiB+ (i.e., significant global PiB load), and APOE+ (ε4 carrier) versus APOE-. The DMN regions were: superior prefrontal cortex (sPFC), medial PFC (mPFC), ventral PFC (vPFC), anterior (aPFC), posterior cingulate cortex (PCC), lateral posterior parietal cortex (PPC), retrosplenial cortex (RSC), parahippocampal gyrus (PHG), cerebellar tonsils (CT), and inferior temporal cortex (ITC). For GT we looked at global- and local efficiency (LE), clustering coefficient (CC), and cost. Results: HCS demonstrated stronger FC between sPFC - RSC, left PPC - right sPFC, and mPFC - left sPFC. PiB+ subjects showed lower FC for: mPFC - CT, vPFC - aPFC, vPFC - left sPFC, aPFC - left sPFC, and left PPC - dACC. PiB+ showed stronger FC between left and right PHG, left PPC - RSC, and left PHG - aPFC. APOE- demonstrated higher FC between left PPC - dACC, vPFC - aPFC, left sPFC - left PPC, mPFC - right ITC, vPFC - RSC, and aPFC - ITC. HCS showed higher cost in the sPFC and PCC, and LE in the dorsolateral PFC. PiB- yield stronger LE and cost in temporal, visual, and frontal regions. APOE- exhibits higher LE and CC in temporal and visual areas. Conclusions: The spatial extent of FC reductions (especially in prefrontal-related connections) depends on the presence of Aβ and APOE. GT results suggest lower local network interactions and cost in MCI, as well as higher efficiency in PiB- and APOE-individuals.
    Alzheimer's and Dementia 07/2014; 10(4):P826. DOI:10.1016/j.jalz.2014.05.1631 · 17.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. Methods: We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Results: Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Conclusion: Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.
    Frontiers in Aging Neuroscience 03/2014; 5:52. DOI:10.3389/fnagi.2014.00052 · 2.84 Impact Factor
  • Neurobiology of Aging 03/2014; 35:S10. DOI:10.1016/j.neurobiolaging.2014.01.067 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amyloid precursor protein (APP) intracellular domain (AICD) is released from full-length APP upon sequential cleavage by either α- or β-secretase followed by γ-secretase. Together with the adaptor protein Fe65 and the histone acetyltransferase Tip60, AICD forms nuclear multiprotein complexes (AFT complexes) that function in transcriptional regulation. To develop a medium-throughput machine-based assay for visualization and quantification of AFT complex formation in cultured cells. We used cotransfection of bimolecular fluorescence complementation (BiFC) fusion constructs of APP and Tip60 for analysis of subcellular localization by confocal microscopy and quantification by flow cytometry (FC). Our novel BiFC-constructs show a nuclear localization of AFT complexes that is identical to conventional fluorescence-tagged constructs. Production of the BiFC signal is dependent on the adaptor protein Fe65 resulting in fluorescence complementation only after Fe65-mediated nuclear translocation of AICD and interaction with Tip60. We applied the AFT-BiFC system to show that the Swedish APP familial Alzheimer's disease mutation increases AFT complex formation, consistent with the notion that AICD mediated nuclear signaling mainly occurs following APP processing through the amyloidogenic β-secretase pathway. Next, we studied the impact of posttranslational modifications of AICD on AFT complex formation. Mutation of tyrosine 682 in the YENPTY motif of AICD to phenylalanine prevents phosphorylation resulting in increased nuclear AFT-BiFC signals. This is consistent with the negative impact of tyrosine phosphorylation on Fe65 binding to AICD. Finally, we studied the effect of oxidative stress. Our data shows that oxidative stress, at a level that also causes cell death, leads to a reduction in AFT-BiFC signals. We established a new method for visualization and FC quantification of the interaction between AICD, Fe65 and Tip60 in the nucleus based on BiFC. It enables flow cytometric analysis of AICD nuclear signaling and is characterized by scalability and low background fluorescence.
    PLoS ONE 09/2013; 8(9):e76094. DOI:10.1371/journal.pone.0076094 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The integrity of subcortical brain nuclei is associated with maintenance of regular cognitive performance levels and has been shown to be particularly affected by aging-related vascular pathology. This study aims to demonstrate applicability of high field strength magnetic resonance angiography at 7 Tesla (7T) for assessment of interindividual variation in subcortical vascularization. Methods Two healthy female subjects without known history of cerebrovascular disease or malformation, aged 43 and 86 years, respectively, were administered three-dimensional (3D) high-resolution time-of-flight (TOF) magnetic resonance angiography at 7T. The FreeSurfer software package was used for automated parcellation and assessment of subcortical volumes. For each volume, mean regional intensities were calculated based on the TOF contrast as a quantitative reflection of regional subcortical gray-matter vascularization. Results While volumes of the subcortical brain region assessed did not differ significantly (30.2 and 27.8 mL, P = 0.78), mean intensities were significantly reduced in the older participant (10%, P = 0.004). Mean intensities could be assessed for each participant for 14 subcortical structures, strongest differences were observable for the left and right Thalamus (T [left, right] = 3.85, 3.82; P [left, right] = 0.002, 0.003). Conclusions High-resolution TOF magnetic resonance angiography may be used in combination with automated volume-based parcellation to quantify regional subcortical vascularization and to assess interindividual differences. Additional studies are necessary to assess its potential use in clinical trials on cerebrovascular integrity in a context of aging-related brain change.
    09/2013; 3(5):515-8. DOI:10.1002/brb3.154
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease (HD) is a neurodegenerative disease caused by cytosine-adenine-guanine (CAG)-repeat expansion in the huntingtin (HTT) gene. Early changes that may precede clinical manifestation of movement disorder include executive dysfunction. The aim of this study was to identify functional network correlates of impaired higher cognitive functioning in relation to HD stage. Blood-oxygenation-level-dependent (BOLD) functional-magnetic resonance imaging (fMRI) and structural-MRI were performed in 53 subjects with the HD-mutation (41 prodromals, 12 early affected) and 52 controls. Disease stage was estimated for each subject with HD-mutation based on age, length of the CAG-repeat expansion mutation and also putaminal atrophy. The Tower of London test was administered with three levels of complexity during fMRI as a challenge of executive function. Functional brain networks of interest were identified based on cortical gray matter voxel-clusters with significantly enhanced task-related functional coupling to the medial prefrontal cortex (MPFC) area. While prodromal HD-subjects showed similar performance levels as controls, multivariate analysis of task-related functional coupling to the MPFC identified reduced connectivity in prodromal and early manifest HD-subjects for a cluster including mainly parts of the left premotor area. Secondary testing indicated a significant moderator effect for task complexity on group differences and on the degree of correlation to measures of HD stage. Our data suggest that impaired premotor-MPFC coupling reflects HD stage related dysfunction of cognitive systems involved in executive function and may be present in prodromal HD-subjects that are still cognitively normal. Additional longitudinal studies may reveal temporal relationships between impaired task-related premotor-MPFC coupling and other brain changes in HD.
    Cortex 06/2013; 49(10). DOI:10.1016/j.cortex.2013.05.015 · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective:Cognitive dysfunction is a core feature of schizophrenia, and persons at risk for schizophrenia may show subtle deficits in attention and working memory. In this study, we investigated the relationship between integrity of functional brain networks and performance in attention and working memory tasks as well as schizophrenia risk.Methods:A total of 235 adults representing 3 levels of risk (102 outpatients with schizophrenia, 70 unaffected first-degree relatives of persons with schizophrenia, and 63 unrelated healthy controls [HCs]) completed resting-state functional magnetic resonance imaging and a battery of attention and working memory tasks (Brief Test of Attention, Hopkins Verbal Learning Test, and Brief Visuospatial Memory Test) on the same day. Functional networks were defined based on coupling with seeds in the dorsal anterior cingulate cortex, dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and primary visual cortex. Networks were then dissected into regional clusters of connectivity that were used to generate individual interaction matrices representing functional connectivity within each network.Results:Both patients with schizophrenia and their first-degree relatives showed cognitive dysfunction compared with HCs. First canonicals indicated an inverse relationship between cognitive performance and connectivity within the DLPFC and MPFC networks. Multivariate analysis of variance revealed multivariate main effects of higher schizophrenia risk status on increased connectivity within the DLPFC and MPFC networks.Conclusions:These data suggest that excessive connectivity within brain networks coupled to the DLPFC and MPFC, respectively, accompany cognitive deficits in persons at risk for schizophrenia. This might reflect compensatory reactions in neural systems required for cognitive processing of attention and working memory tasks to brain changes associated with schizophrenia.
    Schizophrenia Bulletin 06/2013; 40(3). DOI:10.1093/schbul/sbt077 · 8.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein misfolding into amyloid-like aggregates underlies many neurodegenerative diseases. Thus, insights into the structure and function of these amyloids will provide valuable information on the pathological mechanisms involved and aid in the design of improved drugs for treating amyloid-based disorders. However, determining the structure of endogenous amyloids at high resolution has been difficult. Here we employ binding-activated localization microscopy (BALM) to acquire superresolution images of α-synuclein amyloid fibrils with unprecedented optical resolution. We propose that BALM imaging can be extended to study the structure of other amyloids, for differential diagnosis of amyloid-related diseases and for discovery of drugs that perturb amyloid structure for therapy.
    ACS Chemical Neuroscience 04/2013; 4(7). DOI:10.1021/cn400091m · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic amyloid-β peptide precursor (APP) mutations clustered around position 693 of APP-position 22 of the Aβ sequence-are commonly associated with congophilic amyloid angiopathy (CAA) and intracerebral hemorrhages. In contrast, the Osaka (E693Δ) intra-Aβ APP mutation shows a recessive pattern of inheritance that leads to AD-like dementia despite low brain amyloid on in vivo positron emission tomography imaging. Here, we investigated the effects of the Osaka APP mutation on Aβ accumulation and deposition in vivo using a newly generated APP transgenic mouse model (E22ΔAβ) expressing the Osaka mutation together with the Swedish (K670N/M671L) double mutation. E22ΔAβ mice exhibited reduced α-processing of APP and early accumulation of intraneuronal fibrillar Aβ oligomers associated with cognitive deficits. In line with our in vitro findings that recombinant E22Δ-mutated Aβ peptides form amyloid fibrils, aged E22ΔAβ mice showed extracellular CAA deposits in leptomeningeal cerebellar and cortical vessels. In vitro results from thioflavin T aggregation assays with recombinant Aβ peptides revealed a yet unknown antiamyloidogenic property of the E693Δ mutation in the heterozygous state and an inhibitory effect of E22Δ Aβ42 on E22Δ Aβ40 fibrillogenesis. Moreover, E22Δ Aβ42 showed a unique aggregation kinetics lacking exponential fibril growth and poor seeding effects on wild-type Aβ aggregation. These results provide a possible explanation for the recessive trait of inheritance of the Osaka APP mutation and the apparent lack of amyloid deposition in E693Δ mutation carriers.
    Translational Psychiatry 11/2012; 2:e183. DOI:10.1038/tp.2012.109 · 4.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To assess the associations between obesity markers (BMI, waist circumference and %body fat) and inflammatory markers (interleukin-1β (IL-1β); interleukin-6 (IL-6); tumor necrosis factor-α (TNF-α) and high-sensitivity C-reactive protein (hs-CRP)). Methods: Population sample of 2,884 men and 3,201 women aged 35-75 years. Associations were assessed using ridge regression adjusting for age, leisure-time physical activity, and smoking. Results: No differences were found in IL-1β levels between participants with increased obesity markers and healthy counterparts; multivariate regression showed %body fat to be negatively associated with IL-1β. Participants with high %body fat or abdominal obesity had higher IL-6 levels, but no independent association between IL-6 levels and obesity markers was found on multivariate regression. Participants with abdominal obesity had higher TNF-α levels, and positive associations were found between TNF-α levels and waist circumference in men and between TNF-α levels and BMI in women. Obese participants had higher hs-CRP levels, and these differences persisted after multivariate adjustment; similarly, positive associations were found between hs-CRP levels and all obesity markers studied. Conclusion: Obesity markers are differentially associated with cytokine levels. %Body fat is negatively associated with IL-1β; BMI (in women) and waist circumference (in men) are associated with TNF-α; all obesity markers are positively associated with hs-CRP. Copyright © 2012 S. Karger GmbH, Freiburg.
    Obesity Facts 10/2012; 5(5):734-744. DOI:10.1159/000345045 · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AimsStroke is a leading cause of morbidity and mortality, and its incidence increases with age. Both in animals and in humans, oxidative stress appears to play an important role in ischaemic stroke, with or without reperfusion. The adaptor protein p66(Shc) is a key regulator of reactive oxygen species (ROS) production and a mediator of ischaemia/reperfusion damage in ex vivo hearts. Hence, we hypothesized that p66(Shc) may be involved in ischaemia/reperfusion brain damage. To this end, we investigated whether genetic deletion of p66(Shc) protects from ischaemia/reperfusion brain injury.Methods and resultsTransient middle cerebral artery occlusion (MCAO) was performed to induce ischaemia/reperfusion brain injury in wild-type (Wt) and p66(Shc) knockout mice (p66(Shc-/-)), followed by 24 h of reperfusion. Cerebral blood flow and blood pressure measurements revealed comparable haemodynamics in both experimental groups. Neuronal nuclear antigen immunohistochemical staining showed a significantly reduced stroke size in p66(Shc-/-) when compared with Wt mice (P < 0.05, n = 7-8). In line with this, p66(Shc-/-) mice exhibited a less impaired neurological function and a decreased production of free radicals locally and systemically (P < 0.05, n = 4-5). Following MCAO, protein levels of gp91phox nicotinamide adenine dinucleotide phosphate oxidase subunit were increased in brain homogenates of Wt (P < 0.05, n = 4), but not of p66(Shc-/-) mice. Further, reperfusion injury in Wt mice induced p66(Shc) protein in the basilar and middle cerebral artery, but not in brain tissue, suggesting a predominant involvement of vascular p66(Shc).Conclusion In the present study, we show that the deletion of the ageing gene p66(Shc) protects mice from ischaemia/reperfusion brain injury through a blunted production of free radicals. The ROS mediator p66(Shc) may represent a novel therapeutical target for the treatment of ischaemic stroke.
    European Heart Journal 09/2012; 34(2). DOI:10.1093/eurheartj/ehs331 · 14.72 Impact Factor

Publication Stats

7k Citations
883.48 Total Impact Points

Institutions

  • 2000–2015
    • University of Zurich
      • • Psychiatry Research
      • • Division of Neuropsychology
      Zürich, Zurich, Switzerland
    • University of Hamburg
      Hamburg, Hamburg, Germany
    • Duke University
      Durham, North Carolina, United States
  • 2011–2012
    • University Hospital Zürich
      Zürich, Zurich, Switzerland
  • 2004
    • University of California, Irvine
      • Department of Neurobiology and Behavior
      Irvine, California, United States
  • 2003–2004
    • Aristotle University of Thessaloniki
      Saloníki, Central Macedonia, Greece
  • 1999–2001
    • Universitäre Psychiatrische Kliniken Basel
      Bâle, Basel-City, Switzerland
  • 1997–2000
    • Psychiatrische Universitätsklinik Zürich
      Zürich, Zurich, Switzerland
  • 1996–2000
    • Universität Basel
      • Institut für Physiologie
      Bâle, Basel-City, Switzerland
  • 1995
    • University Hospital München
      München, Bavaria, Germany
    • Ludwig-Maximilian-University of Munich
      • Department of Psychiatry
      München, Bavaria, Germany