Russell J Fernandes

University of Washington Seattle, Seattle, Washington, United States

Are you Russell J Fernandes?

Claim your profile

Publications (28)146.18 Total impact

  • Alan D Murdoch · Timothy E Hardingham · David R Eyre · Russell J Fernandes ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Damaged hyaline cartilage shows a limited capacity for innate repair. Potential sources of cells to augment the clinical repair of cartilage defects include autologous chondrocytes and mesenchymal stem cells. We have reported that culture of human bone marrow mesenchymal stem cells with specific growth and differentiation factors as shallow multilayers on Transwell permeable membranes provided ideal conditions for chondrogenesis. Rigid translucent cartilaginous discs formed and expressed cartilage-specific structural proteins aggrecan and type II collagen. We report here the analysis of the collagen network assembled in these cartilage constructs and identify key features of the network as it became mature during 28 days culture. The type II collagen was co-polymerized with types XI and IX collagens in a fibrillar network stabilized by hydroxylysyl pyridinoline cross-links as in epiphyseal and hyaline cartilages. Tandem ion-trap mass-spectrometry identified 3-hydroxylation of Proline 986 and Proline 944 of the α1(II) chains, a post-translational feature of human epiphyseal cartilage type II collagen. The formation of a type II collagen based hydroxy-lysyl pyridinoline cross-linked network typical of cartilage in 28 days shows that the Transwell system not only produces, secretes and assembles cartilage collagens, but also provides all the extracellular mechanisms to modify and generate covalent cross-links that determine a robust collagen network. This organized assembly explains the stiff, flexible nature of the cartilage constructs developed from hMSCs in this culture system.
    Matrix biology: journal of the International Society for Matrix Biology 11/2015; DOI:10.1016/j.matbio.2015.10.003 · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Until now, no biological tools have been available to determine if a cross-linked collagen fibrillar network derived entirely from type IIA procollagen isoforms, can form in the extracellular matrix (ECM) of cartilage. Recently, homozygous knock-in transgenic mice (Col2a1(+ex2), ki/ki) were generated that exclusively express the IIA procollagen isoform during post-natal development while type IIB procollagen, normally present in the ECM of wild type mice, is absent. The difference between these Col2a1 isoforms is the inclusion (IIA) or exclusion (IIB) of exon 2 that is alternatively spliced in a developmentally regulated manner. Specifically, chondroprogenitor cells synthesize predominantly IIA mRNA isoforms while differentiated chondrocytes produce mainly IIB mRNA isoforms. Recent characterization of the Col2a1(+ex2) mice has surprisingly shown that disruption of alternative splicing does not affect overt cartilage formation. In the present study, biochemical analyses showed that type IIA collagen extracted from ki/ki mouse rib cartilage can form homopolymers that are stabilized predominantly by hydroxylysyl pyridinoline (HP) cross-links at levels that differed from wild type rib cartilage. The findings indicate that mature type II collagen derived exclusively from type IIA procollagen molecules can form hetero-fibrils with type XI collagen and contribute to cartilage structure and function. Heteropolymers with type XI collagen also formed. Electron microscopy revealed mainly thin type IIA collagen fibrils in ki/ki mouse rib cartilage. Immunoprecipitation and mass spectrometry of purified type XI collagen revealed a heterotrimeric molecular composition of α1(XI)α2(XI)α1(IIA) chains where the α1(IIA) chain is the IIA form of the α3(XI) chain. Since the N-propeptide of type XI collagen regulates type II collagen fibril diameter in cartilage, the retention of the exon 2-encoded IIA globular domain would structurally alter the N-propeptide of type XI collagen. This structural change may subsequently affect the regulatory function of type XI collagen resulting in the collagen fibril and cross-linking differences observed in this study.
    Matrix biology: journal of the International Society for Matrix Biology 10/2013; 34. DOI:10.1016/j.matbio.2013.09.006 · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exact molecular mechanisms governing articular chondrocytes remain unknown in skeletal biology. In this study we have found that ESET (an ERG-associated protein with a SET domain, also called SETDB1) histone methyltransferase is expressed in articular cartilage. To test whether ESET regulates articular chondrocytes, we carried out mesenchymal-specific deletion of the ESET gene in mice. ESET knockout did not affect generation of articular chondrocytes during embryonic development. Two weeks after birth, there was minimal qualitative difference at the knee joints between wild-type and ESET knockout animals. At one month, ectopic hypertrophy, proliferation and apoptosis of articular chondrocytes were seen in the articular cartilage of ESET-null animals. At three months, additional signs of terminal differentiation such as increased alkaline phosphatase activity and an elevated level of matrix metalloproteinase (MMP)-13 were found in ESET-null cartilage. Staining for type II collagen and proteoglycan revealed that cartilage degeneration became progressively worse from two weeks to 12 months at the knee joints of ESET knockout mutants. Analysis of over 14 pairs of age and sex-matched wild-type and knockout mice indicated that the articular chondrocyte phenotype in ESET-null mutants is 100% penetrant. Our results demonstrate that expression of ESET plays an essential role in the maintenance of articular cartilage by preventing articular chondrocytes from terminal differentiation, and may have implications in joint diseases such as osteoarthritis.
    Journal of Biological Chemistry 09/2013; 288(45). DOI:10.1074/jbc.M113.473827 · 4.57 Impact Factor
  • Nikolas W Hrabe · Peter Heinl · Rajendra K Bordia · Carolin Körner · Russell J Fernandes ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Regular 3D periodic porous Ti-6Al-4V structures were fabricated by the selective electron beam melting method (EBM) over a range of relative densities (0.17-0.40) and pore sizes (500-1500µm). Structures were seeded with human osteoblast-like cells (SAOS-2) and cultured for 4 weeks. Cells multiplied within these structures and extracellular matrix collagen content increased. Type I and type V collagens typically synthesized by osteoblasts were deposited in the newly formed matrix with time in culture. High magnification scanning electron microscopy revealed cells attached to surfaces on the interior of the structures with an increasingly fibrous matrix. The in-vitro results demonstrate that the novel EBM-processed porous structures, designed to address the effect of stress-shielding, are conducive to osteoblast attachment, proliferation, and deposition of a collagenous matrix characteristic of bone.
    Connective tissue research 07/2013; 54(6). DOI:10.3109/03008207.2013.822864 · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ESET (also called SETDB1) protein contains an N-terminal tudor domain that mediates protein-protein interactions and a C-terminal SET domain that catalyzes methylation of histone H3 at lysine 9. We report here that ESET protein is transiently upregulated in prehypertrophic chondrocytes in newborn mice. To investigate the in vivo effects of ESET on chondrocyte differentiation, we generated conditional knockout mice to specifically eliminate the catalytic SET domain of ESET protein only in mesenchymal cells. Such deletion of the ESET gene caused acceleration of chondrocyte hypertrophy in both embryos and young animals, depleting chondrocytes that are otherwise available to form epiphyseal plates for endochondral bone growth. ESET-deficient mice are thus characterized by defective long bone growth and trabecular bone formation. To understand the underlying mechanism for ESET regulation of chondrocytes, we carried out co-expression experiments and found that ESET associates with histone deacetylase 4 to bind and inhibit the activity of Runx2, a hypertrophy-promoting transcription factor. Repression of Runx2-mediated gene transactivation by ESET is dependent on its H3-K9 methyltransferase activity as well as its associated histone deacetylase activity. In addition, knockout of ESET is associated with repression of Indian hedgehog gene in pre- and early hypertrophic chondrocytes. Together, these results provide clear evidence that ESET controls hypertrophic differentiation of growth plate chondrocytes and endochondral ossification during embryogenesis and postnatal development.
    Developmental Biology 05/2013; 380(1). DOI:10.1016/j.ydbio.2013.04.031 · 3.55 Impact Factor
  • Source
    S. Ravindran · L. Wirthlin · U. Hansen · M.J. Silva · R.J. Fernandes · A. McAlinden ·

    Osteoarthritis and Cartilage 04/2013; 21:S108-S109. DOI:10.1016/j.joca.2013.02.229 · 4.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. Another isoform, IIC, has also been identified that contains a truncated exon 2 and is not translated into protein. The biological significance of this IIA/IID to IIB splicing switch is not known. Utilizing a splice site targeting knock-in approach, a 4 nucleotide mutation was created to convert the 5' splice site of Col2a1 exon 2 from a weak, non-consensus sequence to a strong, consensus splice site. This resulted in apparent expression of only the IIA mRNA isoform, as confirmed in vitro by splicing of a type II procollagen mini-gene containing the 5' splice site mutation. To test the splice site targeting approach in vivo, homozygote mice engineered to retain IIA exon 2 (Col2a1(+ex2)) were generated. Chondrocytes from hindlimb epiphyseal cartilage of homozygote mice were shown to express only IIA mRNA and protein at all pre- and post-natal developmental stages analyzed (E12.5, E16.5, P0, P3, P7, P14, P28 and P70). As expected, type IIB procollagen was the major isoform produced in wild type cartilage at all post-natal time points. Col2a1(+ex2) homozygote mice are viable, appear healthy and display no overt phenotype to date. However, research is currently underway to investigate the biological consequence of persistent expression of the exon 2-encoded conserved cysteine-rich domain in post-natal skeletal tissues.
    Matrix biology: journal of the International Society for Matrix Biology 04/2012; 31(3):214-26. DOI:10.1016/j.matbio.2011.12.004 · 5.07 Impact Factor
  • Source
    S. Ravindran · R. Lewis · R. J. Fernandes · A. McAlinden ·

    Osteoarthritis and Cartilage 09/2011; 19. DOI:10.1016/S1063-4584(11)60102-7 · 4.17 Impact Factor
  • Russell J Fernandes · Alex W Farnand · Geoffrey R Traeger · Mary Ann Weis · David R Eyre ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The fibrillar collagen types I, II, and V/XI have recently been shown to have partially 3-hydroxylated proline (3Hyp) residues at sites other than the established primary Pro-986 site in the collagen triple helical domain. These sites showed tissue specificity in degree of hydroxylation and a pattern of D-periodic spacing. This suggested a contributory role in fibril supramolecular assembly. The sites in clade A fibrillar α1(II), α2(V), and α1(I) collagen chains share common features with known prolyl 3-hydroxylase 2 (P3H2) substrate sites in α1(IV) chains implying a role for this enzyme. We pursued this possibility using the Swarm rat chondrosarcoma cell line (RCS-LTC) found to express high levels of P3H2 mRNA. Mass spectrometry determined that all the additional candidate 3Hyp substrate sites in the pN type II collagen made by these cells were highly hydroxylated. In RNA interference experiments, P3H2 protein synthesis was suppressed coordinately with prolyl 3-hydroxylation at Pro-944, Pro-707, and the C-terminal GPP repeat of the pNα1(II) chain, but Pro-986 remained fully hydroxylated. Furthermore, when P3H2 expression was turned off, as seen naturally in cultured SAOS-2 osteosarcoma cells, full 3Hyp occupancy at Pro-986 in α1(I) chains was unaffected, whereas 3-hydroxylation of residue Pro-944 in the α2(V) chain was largely lost, and 3-hydroxylation of Pro-707 in α2(V) and α2(I) chains were sharply reduced. The results imply that P3H2 has preferred substrate sequences among the classes of 3Hyp sites in clade A collagen chains.
    Journal of Biological Chemistry 07/2011; 286(35):30662-9. DOI:10.1074/jbc.M111.267906 · 4.57 Impact Factor

  • Matrix Biology 12/2008; 27:52-52. DOI:10.1016/j.matbio.2008.09.391 · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable approximately 1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage. Both Dmm/+ and Dmm/Dmm fetal rib cartilage had significantly larger chondrocytes, greater cell density, and less ECM per unit area than +/+ littermates. Quantitative RT-PCR showed a decrease in aggrecan mRNA in Dmm/+ vs +/+ cartilage. Furthermore, the cytoplasm of chondrocytes in Dmm/+ and Dmm/Dmm cartilage was occupied by significantly more distended rough endoplasmic reticulum (RER) compared with wild-type chondrocytes. Fibril diameters and packing densities of +/+ and Dmm/+ cartilage were similar, but Dmm/Dmm cartilage showed thinner, sparsely distributed fibrils. These findings support the prevailing hypothesis that a C-propeptide mutation could interrupt the normal assembly and secretion of Type II procollagen trimers, resulting in a buildup of proalpha1(II) chains in the RER and a reduced rate of matrix synthesis. Thus, intracellular entrapment of proalpha1(II) seems to be primarily responsible for the dominant-negative effect of the Dmm mutation in the expression of dwarfism.
    Journal of Histochemistry and Cytochemistry 09/2008; 56(11):1003-11. DOI:10.1369/jhc.2008.951673 · 1.96 Impact Factor
  • Source
    Russell J Fernandes · Maryann Weis · Melissa A Scott · Robert E Seegmiller · David R Eyre ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular mechanisms controlling the assembly of cartilage-specific types II, IX and XI collagens into a heteropolymeric network of uniformly thin, unbanded fibrils are not well understood, but collagen XI has been implicated. The present study on cartilage from the homozygous chondrodysplasia (cho/cho) mouse adds support to this concept. In the absence of alpha1(XI) collagen chains, thick, banded collagen fibrils are formed in the extracellular matrix of cho/cho cartilage. A functional knock-out of the type XI collagen molecule has been assumed. We have re-examined this at the protein level to see if, rather than a complete knock-out, alternative type XI chain assemblies were formed. Mass spectrometry of purified triple-helical collagen from the rib cartilage of cho/cho mice identified alpha1(V) and alpha2(XI) chains. These chains were recovered in roughly equal amounts based on Coomassie Blue staining of SDS-PAGE gels, in addition to alpha1(II)/alpha3(XI) collagen chains. Using telopeptide-specific antibodies and Western blot analysis, it was further shown that type V/XI trimers were present in the matrix cross-linked to each other and to type II collagen molecules to form heteropolymers. Cartilage from heterozygous (cho/+) mice contained a mix of alpha1(V) and alpha1(XI) chains and a mix of thin and thick fibrils on transmission electron microscopy. In summary, the results imply that native type XI collagen molecules containing an alpha1(XI) chain are required to form uniformly thin fibrils and support a role for type XI collagen as the template for the characteristic type II collagen fibril network of developing cartilage.
    Matrix Biology 11/2007; 26(8):597-603. DOI:10.1016/j.matbio.2007.06.007 · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: COL27A1 is a member of the collagen fibrillar gene family and is expressed in cartilaginous tissues including the anlage of endochondral bone. To begin to understand its role in skeletogenesis, the temporospatial distributions of its RNA message and protein product, type XXVII collagen, were determined in developing human skeletal tissues. Laser capture microdissection and quantitative reverse-transcription polymerase chain reaction demonstrated that gene expression occurred throughout the growth plate and that it was higher in the resting and proliferative zones than in hypertrophic cartilage. Immunohistochemical analyses showed that type XXVII collagen was most evident in hypertrophic cartilage at the primary ossification center and at the growth plate and that it accumulated in the pericellular matrix. Synthesis of type XXVII collagen overlapped partly with that of type X collagen, a marker of chondrocyte hypertrophy, preceded the transition of cartilage to bone, and was associated with cartilage calcification. Immunogold electron microscopy of extracted ECM components from mouse growth plate showed that type XXVII collagen was a component of long non-banded fibrous structures, filamentous networks, and thin banded fibrils. The timing and location of synthesis suggest that type XXVII collagen plays a role during the calcification of cartilage and the transition of cartilage to bone.
    Bone 11/2007; 41(4):535-42. DOI:10.1016/j.bone.2007.06.024 · 3.97 Impact Factor
  • Source
    Russell J Fernandes · Michael A Harkey · Maryann Weis · Jennifer W Askew · David R Eyre ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The human osteosarcoma-derived cell line, SAOS-2, exhibits many of the phenotypic characteristics of osteoblasts including the deposition of types I and V collagens in an extracellular matrix. Lesser amounts of collagen XI chains were also detected. The cell layer collagen contains hydroxylysyl pyridinoline cross-links but without the accompanying lysyl pyridinoline typical of human bone collagen. This indicates that the lysine residues at the two helical cross-linking loci are fully hydroxylated. The isoform of lysyl hydroxylase, LH1, known to be required for full hydroxylation at these sites, was shown to be highly expressed by SAOS-2 cells. Our findings provide insight on the mechanism of post-translational overmodification of lysine residues in collagen made by osteosarcoma tumors, and may be relevant for understanding a similar overmodification observed in osteoporotic bone.
    Bone 06/2007; 40(5):1343-51. DOI:10.1016/j.bone.2007.01.011 · 3.97 Impact Factor

  • Matrix Biology 11/2006; 25. DOI:10.1016/j.matbio.2006.08.213 · 5.07 Impact Factor
  • Y. Matsui · T. Goto · T. Komori · T. Michigami · R. J. Fernandes · L. Yang · D. R. Eyre · N. Yasui ·

    Matrix Biology 11/2006; 25. DOI:10.1016/j.matbio.2006.08.187 · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases (P3Hs), but it does not contain their common dioxygenase domain. Loss of Crtap in mice causes an osteochondrodysplasia characterized by severe osteoporosis and decreased osteoid production. CRTAP can form a complex with P3H1 and cyclophilin B (CYPB), and Crtap-/- bone and cartilage collagens show decreased prolyl 3-hydroxylation. Moreover, mutant collagen shows evidence of overmodification, and collagen fibrils in mutant skin have increased diameter consistent with altered fibrillogenesis. In humans, CRTAP mutations are associated with the clinical spectrum of recessive osteogenesis imperfecta, including the type II and VII forms. Hence, dysregulation of prolyl 3-hydroxylation is a mechanism for connective tissue disease.
    Cell 11/2006; 127(2):291-304. DOI:10.1016/j.cell.2006.08.039 · 32.24 Impact Factor

  • Journal of Bone and Mineral Research 10/2006; DOI:10.1359/jbmr.060205 · 6.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regeneration of mammalian digit tips is well described; however, associated cellular or molecular events have not been studied in humans. We describe an in vitro human fetal model of response to digit tip amputation, and report expression of the transcription repressor Msx1 in the developing and regrowing human digit tip. Human fetal digits from specimens ranging from 53 to 117 days' estimated gestational age (EGA) were cultured in a defined serum-free medium with supplemented oxygen for time periods from 4 days to 4 weeks. Histology and immunohistochemistry were performed on paired control and tip-amputated digits. Regrowing tissue covered the cut end of the distal phalanx in digits up to 80 days' EGA. Msx1 expression was detected beneath the nail field in control digits to at least 70 days' EGA and at the regrowing tip of 57-day digits at 4 and 7 days post-amputation. Our results show that human fetal digits regrow tissue in vitro in response to tip amputation. This process appears spatially associated with Msx1 expression. Msx1 expression appears increased at the regrowing tip of 57-day digits by 4 days after amputation.
    Wound Repair and Regeneration 07/2006; 14(4):398-404. DOI:10.1111/j.1743-6109.2006.00139.x · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genes encoding type XI collagen, normally associated with chondrogenesis, are also expressed by osteoblasts. By studying Saos-2 cells, we showed that the transcription factors, Sp1, Sp3, and Sp7 (Osterix), regulate COL11A2 expression through its proximal promoter. The findings indicate both ubiquitous and osteoblast-specific mechanisms of collagen gene regulation. Type XI collagen is essential for skeletal morphogenesis. Collagen XI gene regulation has been studied in chondrocytes but not in osteoblasts. We cultured Saos-2 cells, a human osteosarcoma-derived line of osteoblasts, and analyzed them for alpha2(XI) protein and COL11A2 regulatory mechanisms. Although types I and V were the dominant collagens deposited by Saos-2 cells, they expressed COL11A2 mRNA, and alpha2(XI) chains were present in the extracellular matrix. The COL11A2 promoter region (from -149 to -40) containing three Sp1 binding sites was required for promoter activity in transient transfection assays. All three Sp1 sites were critical for binding by nuclear proteins in electrophoretic mobility shift assays. Further analysis using consensus oligonucleotides and specific antibodies as well as chromatin immunoprecipitation assay implicated Sp1 and Sp3 in binding to this promoter region. Overexpressing Sp1 or Sp3 significantly increased COL11A2 promoter activity and endogenous COL11A2 gene expression, an effect that was suppressed by the Sp1-binding inhibitor mithramycin A. Further experiments showed that Sp1, Sp3, CREB-binding protein (CBP), p300, and histone deacetylase (HDAC) were physically associated and HDAC inhibitors (trichostatin A or NaB) upregulated COL11A2 promoter activity and endogenous gene expression. Another Sp1 family member, Sp7 (Osterix), was expressed in Saos-2 cells, but not in chondrocytes, and was shown by chromatin immunoprecipitation to occupy the COL11A2 promoter. Overexpressing Sp7 increased COL11A2 promoter activity and endogenous gene expression, an effect also blocked by mithramycin A. Using siRNA to knockdown Sp1, Sp3, or Sp7, it was shown that depression of any of them decreased COL11A2 promoter activity and endogenous gene expression. Finally, primary cultures of osteoblasts expressed COL11A2 and Sp7, upregulated COL11A2 promoter activity and endogenous gene expression when Sp1, Sp3, or Sp7 were overexpressed, and downregulated them when Sp1, Sp3, or Sp7 were selectively depressed. The results establish that Sp1 proteins regulate COL11A2 transcription by binding to its proximal promoter and directly interacting with CBP, p300, and HDAC.
    Journal of Bone and Mineral Research 06/2006; 21(5):661-73. DOI:10.1359/jbmr.020605 · 6.83 Impact Factor

Publication Stats

750 Citations
146.18 Total Impact Points


  • 1997-2013
    • University of Washington Seattle
      • Department of Orthopaedics and Sports Medicine
      Seattle, Washington, United States
  • 2008
    • Brigham Young University - Provo Main Campus
      • Department of Microbiology and Molecular Biology
      Provo, Utah, United States
  • 2006
    • Northeast Ohio Medical University
      رافينا، أوهايو, Ohio, United States