Adam J Rose

IT University of Copenhagen, København, Capital Region, Denmark

Are you Adam J Rose?

Claim your profile

Publications (27)112.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how muscle contraction orchestrates insulin-independent muscle glucose transport may enable development of hyperglycemia-treating drugs. The prevailing concept implicates Ca2+ as a key feed forward regulator of glucose transport with secondary fine-tuning by metabolic feedback signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca2+ release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport during muscle contraction, and call for a major reconsideration of the established Ca2+ centric paradigm.
    Molecular Metabolism. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exercise-induced phosphorylation of FXYD1 is a potential important regulator of Na(+)-K(+)-pump activity. It was investigated whether skeletal muscle contractions induce phosphorylation of FXYD1 and whether protein kinase Cα (PKCα) activity is a prerequisite for this possible mechanism. In part 1, human muscle biopsies were obtained at rest, after 30 s of high-intensity exercise (166 ± 31% of Vo(2max)) and after a subsequent 20 min of moderate-intensity exercise (79 ± 8% of Vo(2max)). In general, FXYD1 phosphorylation was increased compared with rest both after 30 s (P < 0.05) and 20 min (P < 0.001), and more so after 20 min compared with 30 s (P < 0.05). Specifically, FXYD1 ser63, ser68, and combined ser68 and thr69 phosphorylation were 26-45% higher (P < 0.05) after 20 min of exercise than at rest. In part 2, FXYD1 phosphorylation was investigated in electrically stimulated soleus and EDL muscles from PKCα knockout (KO) and wild-type (WT) mice. Contractile activity caused FXYD1 ser68 phosphorylation to be increased (P < 0.001) in WT soleus muscles but to be reduced (P < 0.001) in WT extensor digitorum longus. In contrast, contractile activity did not affect FXYD1 ser68 phosphorylation in the KO mice. In conclusion, exercise induces FXYD1 phosphorylation at multiple sites in human skeletal muscle. In mouse muscles, contraction-induced changes in FXYD1 ser68 phosphorylation are fiber-type specific and dependent on PKCα activity.
    AJP Regulatory Integrative and Comparative Physiology 09/2011; 301(6):R1808-14. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations.
    The Journal of Lipid Research 02/2011; 52(4):699-711. · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While production of reactive oxygen and nitrogen species (RONS) is associated with some of the beneficial adaptations to regular physical exercise, it is not established whether RONS play a role in the improved insulin-stimulated glucose uptake in skeletal muscle obtained by endurance training. To assess the effect of antioxidant supplementation during endurance training on insulin-stimulated glucose uptake, 21 young healthy (age 29 ± 1 y, BMI 25 ± 3 kg/m(2)) men were randomly assigned to either an antioxidant [AO; 500 mg vitamin C and 400 IU vitamin E (α-tocopherol) daily] or a placebo (PL) group that both underwent a supervised intense endurance-training program 5 times/wk for 12 wk. A 3-h euglycemic-hyperinsulinemic clamp, a maximal oxygen consumption (Vo(2max)) and maximal power output (P(max)) test, and body composition measurements (fat mass, fat-free mass) were performed before and after the training. Muscle biopsies were obtained for determination of the concentration and activity of proteins regulating glucose metabolism. Although plasma levels of vitamin C (P < 0.05) and α-tocopherol (P < 0.05) increased markedly in the AO group, insulin-stimulated glucose uptake increased similarly in both the AO (17.2%, P < 0.05) and the PL (18.9%, P < 0.05) group in response to training. Vo(2max) and P(max) also increased similarly in both groups (time effect, P < 0.0001 for both) as well as protein content of GLUT4, hexokinase II, and total Akt (time effect, P ≤ 0.05 for all). Our results indicate that administration of antioxidants during strenuous endurance training has no effect on the training-induced increase in insulin sensitivity in healthy individuals.
    AJP Endocrinology and Metabolism 02/2011; 300(5):E761-70. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a considerable commercial market, especially within the sports community, claiming the need for antioxidant supplementation. One argument for antioxidant supplementation in sports is that physical exercise is associated with increased reactive oxygen and nitrogen species (RONS) production, which may cause cell damage. However, RONS production may also activate redox-sensitive signaling pathways and transcription factors, which subsequently, may promote training adaptation. Our aim was to investigate the effects of combined vitamin C and E supplementation to healthy individuals on different measures of exercise performance after endurance training. Using a double-blinded placebo-controlled design, moderately trained young men received either oral supplementation with vitamins C and E (n = 11) or placebo (n = 10) before and during 12 wk of supervised, strenuous bicycle exercise training of a frequency of 5 d x wk(-1). Muscle biopsies were obtained before and after training. After the training period, maximal oxygen consumption, maximal power output, and workload at lactate threshold increased markedly (P < 0.01) in both groups. Also, glycogen concentration, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity in the muscle were significantly higher in response to training (P < 0.01) in both groups. However, there were no differences between the two groups concerning any of the physiological and metabolic variables measured. Our results suggest that administration of vitamins C and E to individuals with no previous vitamin deficiencies has no effect on physical adaptations to strenuous endurance training.
    Medicine and science in sports and exercise 12/2009; 42(7):1388-95. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-stimulated glucose disposal is impaired in obesity and type 2 diabetes mellitus (T2DM) and is tightly linked to impaired skeletal muscle glucose uptake and storage. Impaired activation of glycogen synthase (GS) by insulin is a well-established defect in both obesity and T2DM, but the underlying mechanisms remain unclear. Insulin action was investigated in a matched cohort of lean healthy, obese nondiabetic, and obese type 2 diabetic subjects by the euglycemic-hyperinsulinemic clamp technique combined with muscle biopsies. Activity, site-specific phosphorylation, and upstream signaling of GS were evaluated in skeletal muscle. GS activity correlated inversely with phosphorylation of GS site 2+2a and 3a. Insulin significantly decreased 2+2a phosphorylation in lean subjects only and induced a larger dephosphorylation at site 3 in lean compared with obese subjects. The exaggerated insulin resistance in T2DM compared with obese subjects was not reflected by differences in site 3 phosphorylation but was accompanied by a significantly higher site 1b phosphorylation during insulin stimulation. Hyperphosphorylation of another Ca(2+)/calmodulin-dependent kinase-II target, phospholamban-Thr17, was also evident in T2DM. Dephosphorylation of GS by phosphatase treatment fully restored GS activity in all groups. Dysregulation of GS phosphorylation plays a major role in impaired insulin regulation of GS in obesity and T2DM. In obesity, independent of T2DM, this is associated with impaired regulation of site 2+2a and likely site 3, whereas the exaggerated insulin resistance to activate GS in T2DM is linked to hyperphosphorylation of at least site 1b. Thus, T2DM per se seems unrelated to defects in the glycogen synthase kinase-3 regulation of GS.
    The Journal of clinical endocrinology and metabolism 11/2009; 94(11):4547-56. · 6.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise stimulates muscle protein fractional synthesis rate (FSR), but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intrasubject design in the fasted (n = 10) and fed (n = 10) states. RE consisted of 10 sets of knee extensions. One leg worked against light load (LL) at 16% of one-repetition maximum (1RM), the other leg against heavy load (HL) at 70% 1RM, with intensities equalized for total lifted load. Males were infused with [(13)C]leucine, and vastus lateralis biopsies were obtained bilaterally at rest as well as 0.5, 3, and 5.5 h after RE. Western blots were run on muscle lysates and phosphospecific antibodies used to detect phosphorylation status of targets involved in regulation of FSR. The intramuscular collagen FSR was evenly increased following LL- and HL-RE and was not affected by feeding. Myofibrillar FSR was unaffected by LL-RE, whereas HL-RE resulted in a delayed improvement (0.14 +/- 0.02%/h, P < 0.05). Myofibrillar FSR was increased at rest by feeding (P < 0.05) and remained elevated late in the postexercise period compared with the fasting condition. The Rp-s6k-4E-binding protein-1 (BP1) and the mitogen-activated protein kinase (MAPk) pathways were activated by the HL intensity and were suggested to be responsible for regulating myofibrillar FSR in response to adequate contractile activity. Feeding predominantly affected Rp-s6k and eukaryotic elongation factor 2 phosphorylations in correspondence with the observed changes in myofibrillar FSR, whereas 4E-BP1 remained to respond only to the HL contraction intensity. Thus the study design allows us to conclude that the MAPk- and mammalian target of rapamycin-dependent signaling responds to contractile activity, whereas elongation mainly was found to respond to feeding. Furthermore, although functionally linked, the contractile and the supportive matrix structures upregulate their protein synthesis rate quite differently in response to feeding and contractile activity and intensity.
    AJP Endocrinology and Metabolism 11/2009; 298(2):E257-69. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some studies suggest that the 5'-AMP-activated protein kinase (AMPK) is important in regulating muscle glucose uptake in response to intense electrically stimulated contractions. However, it is unknown whether AMPK regulates muscle glucose uptake during in vivo exercise. We studied this in male and female mice overexpressing kinase-dead AMPKalpha2 (AMPK-KD) in skeletal and heart muscles. Wild-type and AMPK-KD mice were exercised at the same absolute intensity and the same relative intensity (30 and 70% of individual maximal running speed) to correct for reduced exercise capacity of the AMPK-KD mouse. Muscle glucose clearance was measured using 2-deoxy-[(3)H]glucose as tracer. In wild-type mice, glucose clearance was increased at 30 and 70% of maximal running speed by 40 and 350% in the quadriceps muscle and by 120 and 380% in gastrocnemius muscle, respectively. Glucose clearance was not lower in AMPK-KD muscles compared with wild-type regardless of whether animals were exercised at the same relative or the same absolute intensity. In agreement, surface membrane content of the glucose transporter GLUT4 was increased similarly in AMPK-KD and wild-type muscle in response to running. We also measured signaling of alternative exercise-sensitive pathways that might be compensatorily increased in AMPK-KD muscles. However, increases in phosphorylation of CaMKII, Trisk95, p38 MAPK, and ERK1/2 were not higher in AMPK-KD than in WT muscle. Collectively, these findings suggest that AMPKalpha2 signaling is not essential in regulating glucose uptake in mouse skeletal muscle during treadmill exercise and that other mechanisms play a central role.
    AJP Endocrinology and Metabolism 09/2009; 297(4):E924-34. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In skeletal muscle, contractions increase glucose uptake due to a translocation of GLUT4 glucose transporters from intracellular storage sites to the surface membrane. Vesicle-associated membrane proteins (VAMPs) are believed to play an important role in docking and fusion of the GLUT4 transporters at the surface membrane. However, knowledge about which VAMP isoforms colocalize with GLUT4 vesicles in mature skeletal muscle and whether they translocate during muscle contractions is incomplete. The aim of the present study was to further identify VAMP isoforms, which are associated with GLUT4 vesicles and examine which VAMP isoforms translocate to surface membranes in skeletal muscles undergoing contractions. VAMP2, VAMP3, VAMP5, and VAMP7 were enriched in immunoprecipitated GLUT4 vesicles. In response to 20 min of in situ contractions, there was a redistribution of GLUT4 (+64 +/- 13%), transferrin receptor (TfR; +75 +/- 22%), and insulin-regulated aminopeptidase (IRAP; +70 +/- 13%) to fractions enriched in heavy membranes away from low-density membranes (-32 +/- 7%; -18 +/- 12%; -33 +/- 9%; respectively), when compared with the resting contralateral muscle. Similarly, there was a redistribution of VAMP2 (+240 +/- 40%), VAMP5 (+79 +/- 9%), and VAMP7 (+79 +/- 29%), but not VAMP3, to fractions enriched in heavy membranes away from low-density membranes (-49 +/- 10%, -54 +/- 9%, -14 +/- 11%, respectively) in contracted vs. resting muscle. In summary, VAMP2, VAMP3, VAMP5, and VAMP7 coimmunoprecipitate with intracellular GLUT4 vesicles in muscle, and VAMP2, VAMP5, VAMP7, but not VAMP3, translocate to the cell surface membranes similar to GLUT4, TfR, and IRAP in response to muscle contractions. These findings suggest that VAMP2, VAMP5, and VAMP7 may be involved in translocation of GLUT4 during muscle contractions.
    AJP Regulatory Integrative and Comparative Physiology 09/2009; 297(5):R1228-37. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required for contraction-stimulated glucose uptake in mouse muscles, contraction-stimulated glucose uptake ex vivo was first evaluated in the presence of three commonly used cPKC inhibitors (calphostin C, Gö-6976, and Gö-6983) in incubated mouse soleus and extensor digitorum longus (EDL) muscles. All potently inhibited contraction-stimulated glucose uptake by 50-100%, whereas both Gö compounds, but not calphostin C, inhibited insulin-stimulated glucose uptake modestly. AMP-activated protein kinase (AMPK) and eukaryotic elongation factor 2 phosphorylation was unaffected by the blockers. PKCalpha was estimated to account for approximately 97% of total cPKC protein expression in skeletal muscle. However, in muscles from PKCalpha knockout (KO) mice, neither contraction- nor phorbol ester-stimulated glucose uptake ex vivo differed compared with the wild type. Furthermore, the effects of calphostin C and Gö-6983 on contraction-induced glucose uptake were similar in muscles lacking PKCalpha and in the wild type. It can be concluded that PKCalpha, representing approximately 97% of cPKC in skeletal muscle, is not required for contraction-stimulated glucose uptake. Thus the effect of the PKC blockers on glucose uptake is either nonspecific working on other parts of contraction-induced signaling or the remaining cPKC isoforms are sufficient for stimulating glucose uptake during contractions.
    AJP Endocrinology and Metabolism 06/2009; 297(2):E340-8. · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle protein synthesis rate decreases during contractions but the underlying regulatory mechanisms are poorly understood. It was hypothesized that there would be a coordinated regulation of eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1) phosphorylation by signalling cascades downstream of rises in intracellular [Ca(2+)] and decreased energy charge via AMP-activated protein kinase (AMPK) in contracting skeletal muscle. When fast-twitch skeletal muscles were contracted ex vivo using different protocols, the suppression of protein synthesis correlated more closely with changes in eEF2 than 4EBP1 phosphorylation. Using a combination of Ca(2+) release agents and ATPase inhibitors it was shown that the 60-70% suppression of fast-twitch skeletal muscle protein synthesis during contraction was equally distributed between Ca(2+) and energy turnover-related mechanisms. Furthermore, eEF2 kinase (eEF2K) inhibition completely blunted increases in eEF2 phosphorylation and partially blunted (i.e. 30-40%) the suppression of protein synthesis during contractions. The 3- to 5-fold increase in skeletal muscle eEF2 phosphorylation during contractions in situ was rapid and sustained and restricted to working muscle. The increase in eEF2 phosphorylation and eEF2K activation were downstream of Ca(2+)-calmodulin (CaM) but not other putative activating factors such as a fall in intracellular pH or phosphorylation by protein kinases. Furthermore, blunted protein synthesis and 4EBP1 dephosphorylation were unrelated to AMPK activity during contractions, which was exemplified by normal blunting of protein synthesis during contractions in muscles overexpressing kinase-dead AMPK. In summary, in fast-twitch skeletal muscle, the inhibition of eEF2 activity by phosphorylation downstream of Ca(2+)-CaM-eEF2K signalling partially contributes to the suppression of protein synthesis during exercise/contractions.
    The Journal of Physiology 03/2009; 587(Pt 7):1547-63. · 4.38 Impact Factor
  • Adam J Rose, Erik A Richter
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding, fasting, and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regard to protein turnover, there are now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated by suppressed mRNA translation initiation and elongation steps involving, but not limited to, changes in eukaryotic initiation factor 4E binding protein 1 and eukaryotic elongation factor 2 phosphorylation (eEF2), respectively. Evidence is provided that upstream signaling to translation factors is mediated by signaling downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)/calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work with available and new techniques will undoubtedly reveal the functional significance and signaling mechanisms behind changes in skeletal muscle protein turnover during exercise.
    Journal of Applied Physiology 01/2009; 106(5):1702-11. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Insulin-stimulated glucose disposal is impaired in obesity and type 2 diabetes mellitus (T2DM) and is tightly linked to impaired skeletal muscle glucose uptake and storage. Impaired activation of glycogen synthase (GS) by insulin is a well-established defect in both obesity and T2DM, but the underlying mechanisms remain unclear. Design and Participants: Insulin action was investigated in a matched cohort of lean healthy, obese nondiabetic, and obese type 2 diabetic subjects by the euglycemic-hyperinsulinemic clamp tech-nique combined with muscle biopsies. Activity, site-specific phosphorylation, and upstream sig-naling of GS were evaluated in skeletal muscle.
    Diabetes Research Centre. 01/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein synthesis in skeletal muscle is known to decrease during exercise, and it has been suggested that this may depend on the magnitude of the relative metabolic stress within the contracting muscle. To examine the mechanisms behind this, the effect of exercise intensity on skeletal muscle eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) phosphorylation, key components in the mRNA translation machinery, were examined together with AMP-activated protein kinase (AMPK) in healthy young men. Skeletal muscle eEF2 phosphorylation at Thr56 increased during exercise but was not influenced by exercise intensity, and was lower than rest 30 min after exercise. On the other hand, 4EBP1 phosphorylation at Thr37/46 decreased during exercise, and this decrease was greater at higher exercise intensities and was similar to rest 30 min after exercise. AMPK activity, as indexed by AMPK alpha-subunit phosphorylation at Thr172 and phosphorylation of the AMPK substrate ACCbeta at Ser221, was higher with higher exercise intensities, and these indices were higher than rest after high-intensity exercise only. Using immunohistochemistry, it was shown that the increase in skeletal muscle eEF2 Thr56 phosphorylation was restricted to type I myofibers. Taken together, these data suggest that the depression of skeletal muscle protein synthesis with endurance-type exercise may be regulated at both initiation (i.e., 4EBP1) and elongation (i.e., eEF2) steps, with eEF2 phosphorylation contributing at all exercise intensities but 4EBP1 dephosphorylation contributing to a greater extent at high vs. low exercise intensities.
    AJP Regulatory Integrative and Comparative Physiology 12/2008; 296(2):R326-33. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle gene response to exercise depends on nutritional status during and after exercise, but it is unknown whether muscle adaptations to endurance training are affected by nutritional status during training sessions. Therefore, this study investigated the effect of an endurance training program (6 wk, 3 day/wk, 1-2 h, 75% of peak Vo(2)) in moderately active males. They trained in the fasted (F; n = 10) or carbohydrate-fed state (CHO; n = 10) while receiving a standardized diet [65 percent of total energy intake (En) from carbohydrates, 20%En fat, 15%En protein]. Before and after the training period, substrate use during a 2-h exercise bout was determined. During these experimental sessions, all subjects were in a fed condition and received extra carbohydrates (1 body wt(-1) .h(-1)). Peak Vo(2) (+7%), succinate dehydrogenase activity, GLUT4, and hexokinase II content were similarly increased between F and CHO. Fatty acid binding protein (FABPm) content increased significantly in F (P = 0.007). Intramyocellular triglyceride content (IMCL) remained unchanged in both groups. After training, pre-exercise glycogen content was higher in CHO (545 +/- 19 mmol/kg dry wt; P = 0.02), but not in F (434 +/- 32 mmol/kg dry wt; P = 0.23). For a given initial glycogen content, F blunted exercise-induced glycogen breakdown when compared with CHO (P = 0.04). Neither IMCL breakdown (P = 0.23) nor fat oxidation rates during exercise were altered by training. Thus short-term training elicits similar adaptations in peak Vo(2) whether carried out in the fasted or carbohydrate-fed state. Although there was a decrease in exercise-induced glycogen breakdown and an increase in proteins involved in fat handling after fasting training, fat oxidation during exercise with carbohydrate intake was not changed.
    Journal of Applied Physiology 05/2008; 104(4):1045-55. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here the hypothesis that skeletal muscle Ca(2+)-calmodulin-dependent kinase II (CaMKII) expression and signalling would be modified by endurance training was tested. Eight healthy, young men completed 3 weeks of one-legged endurance exercise training with muscle samples taken from both legs before training and 15 h after the last exercise bout. Along with an approximately 40% increase in mitochondrial F(1)-ATP synthase expression, there was an approximately 1-fold increase in maximal CaMKII activity and CaMKII kinase isoform expression after training in the active leg only. Autonomous CaMKII activity and CaMKII autophosphorylation were increased to a similar extent. However, there was no change in alpha-CaMKII anchoring protein expression with training. Nor was there any change in expression or Thr(17) phosphorylation of the CaMKII substrate phospholamban with training. However, another CaMKII substrate, serum response factor (SRF), had an approximately 60% higher phosphorylation at Ser(103) after training, with no change in SRF expression. There were positive correlations between the increases in CaMKII expression and SRF phosphorylation as well as F(1)ATPase expression with training. After training, there was an increase in cyclic-AMP response element binding protein phosphorylation at Ser(133), but not expression, in muscle of both legs. Taken together, skeletal muscle CaMKII kinase isoform expression and SRF phosphorylation is higher with endurance-type exercise training, adaptations that are restricted to active muscle. This may contribute to greater Ca(2+) mediated regulation during exercise and the altered muscle phenotype with training.
    The Journal of Physiology 10/2007; 583(Pt 2):785-95. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-activated protein kinase (AMPK) because alpha-AMPK Thr172 phosphorylation was not increased by caffeine. However, our previous studies, as well as the present, show that AMPK phosphorylation measured in whole muscle lysate is not a good indicator of AMPK activation in rodent skeletal muscle. In lysates from incubated rat soleus muscle, a predominant model in previous caffeine-studies, both acetyl-CoA carboxylase-beta (ACCbeta) Ser221 and immunoprecipitated alpha(1)-AMPK activity increased with caffeine incubation, without changes in AMPK phosphorylation or immunoprecipitated alpha(2)-AMPK activity. This pattern was also observed in mouse soleus muscle, where only ACCbeta and alpha(1)-AMPK phosphorylation were increased following caffeine treatment. Preincubation with the selective CaMKK inhibitor STO-609 (5 microM), the CaM-competitive inhibitor KN-93 (10 microM), or the SR Ca(2+) release blocking agent dantrolene (10 microM) all inhibited ACCbeta phosphorylation and alpha(1)-AMPK phosphorylation, suggesting that SR Ca(2+) release may work through a CaMKK-AMPK pathway. Caffeine-stimulated 2-deoxyglucose (2DG) uptake reflected the AMPK activation pattern, being increased with caffeine and inhibited by STO-609, KN-93, or dantrolene. The inhibition of 2DG uptake is likely causally linked to AMPK activation, since muscle-specific expression of a kinase-dead AMPK construct greatly reduced caffeine-stimulated 2DG uptake in mouse soleus. We conclude that a SR Ca(2+)-activated CaMKK may control alpha(1)-AMPK activation and be necessary for caffeine-stimulated glucose uptake in mouse soleus muscle.
    AJP Endocrinology and Metabolism 08/2007; 293(1):E286-92. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the mechanisms explaining improved insulin-stimulated glucose uptake after exercise training in human skeletal muscle. Eight healthy men performed 3 weeks of one-legged knee extensor endurance exercise training. Fifteen hours after the last exercise bout, insulin-stimulated glucose uptake was approximately 60% higher (P < 0.01) in the trained compared with the untrained leg during a hyperinsulinemic-euglycemic clamp. Muscle biopsies were obtained before and after training as well as after 10 and 120 min of insulin stimulation in both legs. Protein content of Akt1/2 (55 +/- 17%, P < 0.05), AS160 (25 +/- 8%, P = 0.08), GLUT4 (52 +/- 19%, P < 0.001), hexokinase 2 (HK2) (197 +/- 40%, P < 0.001), and insulin-responsive aminopeptidase (65 +/- 15%, P < 0.001) increased in muscle in response to training. During hyperinsulinemia, activities of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-K) (P < 0.005), Akt1 (P < 0.05), Akt2 (P < 0.005), and glycogen synthase (GS) (percent I-form, P < 0.05) increased similarly in both trained and untrained muscle, consistent with increased phosphorylation of Akt Thr(308), Akt Ser(473), AS160, glycogen synthase kinase (GSK)-3alpha Ser(21), and GSK-3beta Ser(9) and decreased phosphorylation of GS site 3a+b (all P < 0.005). Interestingly, training improved insulin action on thigh blood flow, and, furthermore, in both basal and insulin-stimulated muscle tissue, activities of Akt1 and GS and phosphorylation of AS160 increased with training (all P < 0.05). In contrast, training reduced IRS-1-associated PI3-K activity (P < 0.05) in both basal and insulin-stimulated muscle tissue. Our findings do not support generally improved insulin signaling after endurance training; rather it seems that improved insulin-stimulated glucose uptake may result from hemodynamic adaptations as well as increased cellular protein content of individual insulin signaling components and molecules involved in glucose transport and metabolism.
    Diabetes 08/2007; 56(8):2093-102. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation and function of Ca(2+)-calmodulin-dependent kinase II (CaMKII) in contracting rat skeletal muscle was examined. The increase in autonomous activity and phosphorylation at Thr(287) of CaMKII of gastrocnemius muscle in response to contractions in situ was rapid and transient, peaking at 1-3 min, but reversed after 30 min of contractions. There was a positive correlation between CaMKII phosphorylation at Thr(287) and autonomous CaMKII activity. In contrast to the rapid and transient increase in autonomous CaMKII activity, the phosphorylation of the putative CaMKII substrate trisk95/triadin was rapid and sustained during contractions. There were no changes in CaMKII activity and phosphorylation or trisk95 phosphorylation in the resting contralateral muscles during stimulation. When fast-twitch muscles were contracted ex vivo, CaMKII inhibition resulted in a greater magnitude of fatigue as well as blunted CaMKII and trisk95 phosphorylation, identifying trisk95 as a physiological CaMKII substrate. In summary, skeletal muscle CaMKII activation was rapid and sustained during exercise/contraction and is mediated by factors within the contracting muscle, probably through allosteric activation via Ca(2+)-CaM. CaMKII may signal through trisk95 to modulate Ca(2+) release in fast-twitch rat skeletal muscle during exercise/contraction.
    The Journal of Physiology 06/2007; 580(Pt.3):993-1005. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Ca(2+)/calmodulin (CaM) competitive inhibitor KN-93 has previously been used to evaluate 5'-AMP-activated protein kinase (AMPK)-independent Ca(2+)-signaling to contraction-stimulated glucose uptake in muscle during intense electrical stimulation ex vivo. With the use of low-intensity tetanic contraction of mouse soleus and extensor digitorum longus (EDL) muscles ex vivo, this study demonstrates that KN-93 can potently inhibit AMPK phosphorylation and activity after 2 min but not 10 min of contraction while strongly inhibiting contraction-stimulated 2-deoxyglucose uptake at both the 2- and 10-min time points. These data suggest inhibition of Ca(2+)/CaM-dependent signaling events upstream of AMPK, the most likely candidate being the novel AMPK kinase CaM-dependent protein kinase kinase (CaMKK). CaMKK protein expression was detected in mouse skeletal muscle. Similar to KN-93, the CaMKK inhibitor STO-609 strongly reduced AMPK phosphorylation and activity at 2 min and less potently at 10 min. Pretreatment with STO-609 inhibited contraction-stimulated glucose uptake at 2 min in soleus, but not EDL, and in both muscles after 10 min. Neither KN-93 nor STO-609 inhibited 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside-stimulated glucose uptake, AMPK phosphorylation, or recombinant LKB1 activity, suggestive of an LKB1-independent effect. Finally, neither KN-93 nor STO-609 had effects on the reductions in glucose uptake seen in mice overexpressing a kinase-dead AMPK construct, indicating that the effects of KN-93 and STO-609 on glucose uptake require inhibition of AMPK activity. We propose that CaMKKs act in mouse skeletal muscle regulating AMPK phosphorylation and glucose uptake at the onset of mild tetanic contraction and that an intensity- and/or time-dependent switch occurs in the relative importance of AMPKKs during contraction.
    AJP Endocrinology and Metabolism 06/2007; 292(5):E1308-17. · 4.51 Impact Factor

Publication Stats

754 Citations
112.56 Total Impact Points


  • 2006–2014
    • IT University of Copenhagen
      København, Capital Region, Denmark
  • 2009
    • University of Southern Denmark
      Odense, South Denmark, Denmark
  • 2005–2009
    • University of Copenhagen
      • Department of Exercise and Sport Sciences
      Copenhagen, Capital Region, Denmark
  • 2003–2005
    • Deakin University
      • • School of Exercise and Nutrition Sciences
      • • Centre for Physical Activity and Nutrition Research
      Geelong, Victoria, Australia