Gregory A Buck

Virginia Commonwealth University, Ричмонд, Virginia, United States

Are you Gregory A Buck?

Claim your profile

Publications (134)543.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Microbial invasion of the amniotic cavity is associated with spontaneous preterm labor and adverse pregnancy outcome and Mycoplasma hominis is often present. However, the pathogenic process by which M. hominis invades the amniotic cavity and gestational tissues, often resulting in chorioamnionitis and preterm birth, remains unknown. We hypothesized that strains of M. hominis vary genetically with regards to their potential to invade and colonize the amniotic cavity and placenta. We sequenced the entire genomes of two amniotic fluid isolates and a placental isolate of M. hominis from pregnancies that resulted in preterm births, and compared them to the previously sequenced genome of the Type strain PG21. We identified genes specific to the amniotic fluid/placental isolates. We then determined the microbial burden and the presence of these genes in another set of subjects, from whom samples of amniotic fluid had been collected and were positive for M. hominis. We identified two genes encoding surface-located membrane proteins (Lmp1 and Lmp-like) in the sequenced amniotic fluid/placental isolates that were severely truncated in PG21. We also identified, for the first time, a microbial gene of unknown function referred to in this study as gene of interest C (goiC), that was significantly associated with bacterial burden in amniotic fluid and the risk of preterm delivery in patients with preterm labor. A gene in M. hominis was identified that is significantly associated with colonization and/or infection of the upper reproductive tract during pregnancy and with preterm birth. Copyright © 2015 Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deep sequence analysis of the vaginal microbiome is revealing an unexpected complexity that was not anticipated as recently as several years ago. The lack of clarity in the definition of a healthy vaginal microbiome, much less an unhealthy vaginal microbiome, underscores the need for more investigation of these phenomena. Some clarity may be gained by the careful analysis of the genomes of the specific bacteria in these women. Ongoing studies will clarify this process and offer relief for women with recurring vaginal maladies and hope for pregnant women to avoid the experience of preterm birth. Copyright © 2014 Elsevier Inc. All rights reserved.
    Clinics in Laboratory Medicine 12/2014; DOI:10.1016/j.cll.2014.08.006 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as "Mnola." In this study, the mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron transport system. We propose the name "Candidatus Mycoplasma girerdii" for this potential new pathogen.
    PLoS ONE 10/2014; 9(10):e110943. DOI:10.1371/journal.pone.0110943 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Much has been learned about the diversity and distribution of human-associated microbial communities, but we still know little about the biology of the microbiome, how it interacts with the host, and how the host responds to its resident microbiota. The Integrative Human Microbiome Project (iHMP, http://hmp2.org), the second phase of the NIH Human Microbiome Project, will study these interactions by analyzing microbiome and host activities in longitudinal studies of disease-specific cohorts and by creating integrated data sets of microbiome and host functional properties. These data sets will serve as experimental test beds to evaluate new models, methods, and analyses on the interactions of host and microbiome. Here we describe the three models of microbiome-associated human conditions, on the dynamics of preterm birth, inflammatory bowel disease, and type 2 diabetes, and their underlying hypotheses, as well as the multi-omic data types to be collected, integrated, and distributed through public repositories as a community resource.
    Cell Host & Microbe 09/2014; 16(3):276–289. · 12.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Women of European ancestry are more likely to harbor a Lactobacillus-dominated microbiome, whereas African American women are more likely to exhibit a diverse microbial profile. African American women are also twice as likely to be diagnosed with bacterial vaginosis and are twice as likely to experience preterm birth. The objective of this study was to further characterize and contrast the vaginal microbial profiles in African American versus European ancestry women. Through the Vaginal Human Microbiome Project at Virginia Commonwealth University, we performed 16S rRNA gene survey to compare the microbiomes of vaginal samples from 1,268 African American women and 416 women of European ancestry. Our results confirmed significant differences in the vaginal microbiomes of the two groups and identified several taxa relevant to these differences. We found major community types dominated by Gardnerella vaginalis and the uncultivated bacterium, bacterial vaginosis-associated bacterium-1 (BVAB1)(Fredricks et al., 2005) that were common among African Americans. Moreover, prevalence of multiple bacterial taxa that are associated with microbial invasion of the amniotic cavity and preterm birth, including Mycoplasma, Gardnerella, Prevotella, and Sneathia, differed between the two ethnic groups. We investigated the contributions of intrinsic and extrinsic factors, including pregnancy, body mass index, diet, smoking and alcohol use, number of sexual partners, and household income to vaginal community composition. Ethnicity, pregnancy, and alcohol use correlated significantly with the relative abundance of bacterial vaginosis-associated species. Trends between microbial profiles and smoking and number of sexual partners were observed; however, these associations were not statistically significant. These results support and extend previous findings that there are significant differences in the vaginal microbiome related to ethnicity and demonstrate that these differences are pronounced even in healthy women.
    Microbiology 07/2014; DOI:10.1099/mic.0.081034-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Donor T cell mediated graft vs. host effects may result from the aggregate alloreactivity to minor histocompatibility antigens (mHA) presented by the HLA in each donor-recipient pair (DRP) undergoing stem cell transplantation (SCT). Whole exome sequencing has demonstrated extensive nucleotide sequence variation in HLA-matched DRP. Non-synonymous single nucleotide polymorphisms (nsSNPs) in the GVH direction (polymorphisms present in recipient and absent in donor) were identified in 4 HLA-matched related and 5 unrelated DRP. The nucleotide sequence flanking each SNP was obtained utilizing the ANNOVAR software package. All possible nonameric-peptides encoded by the non-synonymous SNP were then interrogated in-silico for their likelihood to be presented by the HLA class I molecules in individual DRP, using the Immune-Epitope Database (IEDB) SMM algorithm. The IEDB-SMM algorithm predicted a median 18,396 peptides/DRP which bound HLA with an IC50 of <500nM, and 2254 peptides/DRP with an IC50 of <50nM. Unrelated donors generally had higher numbers of peptides presented by the HLA. A similarly large library of presented peptides was identified when the data was interrogated using the Net MHCPan algorithm. These peptides were uniformly distributed in the various organ systems. The bioinformatic algorithm presented here demonstrates that there may be a high level of minor histocompatibility antigen variation in HLA-matched individuals, constituting an HLA-specific alloreactivity potential. These data provide a possible explanation for how relatively minor adjustments in GVHD prophylaxis yield relatively similar outcomes in HLA matched and mismatched SCT recipients.
    Frontiers in Immunology 06/2014; 5. DOI:10.3389/fimmu.2014.00529
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients.
    British Journal of Haematology 04/2014; 166(4). DOI:10.1111/bjh.12898 · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways.
    PLoS ONE 03/2014; 9(3):e93462. DOI:10.1371/journal.pone.0093462 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed.
    Frontiers in Immunology 03/2014; 5. DOI:10.3389/fimmu.2014.00613
  • Biology of Blood and Marrow Transplantation 02/2014; 20(2):S269-S270. DOI:10.1016/j.bbmt.2013.12.454 · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bayesian-like operational taxonomic unit examiner (BOTUX) is a new tool for the classification of 16S rRNA gene sequences into operational taxonomic units (OTUs) that addresses the problem of overestimation caused by errors introduced during PCR amplification and DNA sequencing steps. BOTUX utilises a grammar-based assignment strategy, where Bayesian models are built from each word of a given length (e.g., 8-mers). de novo analysis is possible with BOTUX as it does not require a training set, and updates probabilistic models as new sequences are recruited to an OTU. In benchmarking tests performed with real and simulated datasets of 16S rDNA sequences, BOTUX accurately identifies OTUs with comparable or better clustering efficiency and lower execution times than other OTU algorithms tested. BOTUX is the only OTU classifier, which allows incremental analysis of large datasets, and is also adept in clustering both 454 and Illumina datasets in a reasonable timeframe.
    International Journal of Computational Biology and Drug Design 01/2014; 7(2/3):130-145. DOI:10.1504/IJCBDD.2014.061652
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some non-pathogenic trypanosomatids maintain a mutualistic relationship with a betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between the two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate the entire genomes of five trypanosomatids which harbor a symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) and the respective bacteria (TPEs for Trypanosomatid Proteobacterial Endosymbiont), as well as two trypanosomatids without symbionts (RTs for Regular Trypanosomatids), for the presence of genes of the classical pathways for vitamin biosynthesis. Our data show that genes for the biosynthetic pathways of thiamine, biotin, and nicotinic acid are absent from all trypanosomatid genomes. This is in agreement with the absolute growth requirement for these vitamins in all protozoa of the family. Also absent from the genomes of RTs are the genes for the synthesis of pantothenic acid, folic acid, riboflavin, and vitamin B6. This is also in agreement with the available data showing that RTs are auxotrophic for these essential vitamins. On the other hand, SHTs are autotrophic for such vitamins. Indeed, all the genes of the corresponding biosynthetic pathways were identified, most of them in the symbiont genomes, while a few genes, mostly of eukaryotic origin, were found in the host genomes. The only exceptions to the latter are: the gene coding for the enzyme ketopantoate reductase (EC:1.1.1.169) which is related instead to the Firmicutes bacteria; and two other genes, one involved in the salvage pathway of pantothenic acid and the other in the synthesis of ubiquinone, that are related to Gammaproteobacteria. Their presence in trypanosomatids may result from lateral gene transfer. Taken together, our results reinforce the idea that the low nutritional requirement of SHTs is associated with the presence of the symbiotic bacterium, which contains most genes for vitamin production.
    PLoS ONE 11/2013; 8(11):e79786. DOI:10.1371/journal.pone.0079786 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont's contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways.
    BMC Evolutionary Biology 09/2013; 13(1):190. DOI:10.1186/1471-2148-13-190 · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium scindens ATCC 35704 is capable of converting primary bile acids to toxic secondary bile acids, as well as converting glucocorticoids to androgens by side-chain cleavage. The molecular structure of the side-chain cleavage product of cortisol produced by C. scindens was determined to be 11β-hydroxyandrost-4-ene-3,17-dione (11β-OHA) by high-resolution mass spectrometry, 1H and 13C NMR spectroscopy and X-ray crystallography. Using RNA-Seq technology, we identified a cortisol-inducible (~1000-fold) operon (desABCD) encoding at least one enzyme involved in anaerobic side-chain cleavage. The desC gene was cloned, overexpressed, purified and found to encode a 20α-hydroxysteroid dehydrogenase (HSDH). This operon also encodes a putative "transketolase" (desAB) hypothesized to have steroid-17,20-desmolase/oxidase activity, and a possible corticosteroid transporter (desD). RNA-Seq data suggests that the two-carbon side-chain of glucocorticords may feed into the pentose-phosphate pathway and are used as a carbon source. The 20α-HSDH is hypothesized to function as a metabolic "rheostat" controlling rates of side-chain cleavage. Phylogenetic analysis suggests this operon is rare in nature and the desC gene evolved from a gene encoding threonine-dehydrogenase. The physiological effect of 11β-OHAD on the host or other gut microbes is currently unknown
    The Journal of Lipid Research 06/2013; DOI:10.1194/jlr.M038869 · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Until recently, the apicomplexan parasites, Cryptosporidium hominis and C. parvum, were considered the same species. However, the two parasites, now considered distinct species, exhibit significant differences in host range, infectivity, and pathogenicity, and their sequenced genomes exhibit only 95-97% identity. The availability of the complete genome sequences of these organisms provides the potential to identify the genetic variations that are responsible for the phenotypic differences between the two parasites. We compared the genome organization and structure, gene composition, the metabolic and other pathways, and the local sequence identity between the genes of these two Cryptosporidium species. Our observations show that the phenotypic differences between C. hominis and C. parvum are not due to gross genome rearrangements, structural alterations, gene deletions or insertions, metabolic capabilities, or other obvious genomic alterations. Rather, the results indicate that these genomes exhibit a remarkable structural and compositional conservation and suggest that the phenotypic differences observed are due to subtle variations in the sequences of proteins that act at the interface between the parasite and its host.
    05/2013; 2013:832756. DOI:10.1155/2013/832756
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CBA macrophages effectively control Leishmania major infection, yet are permissive to Leishmania amazonensis. Employing a transcriptomic approach, we previously showed the up-regulation of the genes involved in the classical pathway of macrophage activation in resistant mice. However, microarray analyses do not evaluate changes in gene expression that occur after translation. To circumvent this analytical limitation, we employed a proteomics approach to increase our understanding of the modulations that occur during infection and identify novel targets for the control of Leishmania infection. To identify proteins whose expression changes in CBA macrophages infected with L. major or L. amazonensis, protein extracts were obtained and digested and the peptides were characterized using multi-dimensional liquid chromatography coupled with tandem mass spectrometry analyses. A total of 162 proteins were selected as potentially modulated. Using biological network analyses, these proteins were classified as primarily involved in cellular metabolism and grouped into cellular development biological networks. This study is the first to use a proteomics approach to describe the protein modulations involved in cellular metabolism during the initial events of Leishmania-macrophage interaction. Based on these findings, we hypothesize that these differentially expressed proteins likely play a pivotal role in determining the course of infection.
    Microbes and Infection 04/2013; DOI:10.1016/j.micinf.2013.04.005 · 2.73 Impact Factor
  • Source
  • Source
  • Source
  • Source

Publication Stats

3k Citations
543.70 Total Impact Points

Institutions

  • 1989–2014
    • Virginia Commonwealth University
      • • Center for the Study of Biological Complexity
      • • Department of Microbiology & Immunology
      Ричмонд, Virginia, United States
  • 2008
    • Institut Pasteur
      • Department of Genomes and Genetics
      Paris, Ile-de-France, France
  • 1997–2000
    • Northern Virginia Community College - Medical Campus
      Спрингфилд, Virginia, United States