Mathias Jucker

Wisconsin National Primate Research Center, Madison, Wisconsin, United States

Are you Mathias Jucker?

Claim your profile

Publications (155)1261.64 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of β-amyloid deposition and related second-order physiological effects, such as regional cerebral blood flow (rCBF), are key factors for a deeper understanding of Alzheimer's disease (AD). We present longitudinal in vivo data on the dynamics of β-amyloid deposition and the decline of rCBF in two different amyloid precursor protein (APP) transgenic mouse models of AD. Using a multiparametric positron emission tomography and magnetic resonance imaging approach, we demonstrate that in the presence of cerebral β-amyloid angiopathy (CAA), β-amyloid deposition is accompanied by a decline of rCBF. Loss of perfusion correlates with the growth of β-amyloid plaque burden but is not related to the number of CAA-induced microhemorrhages. However, in a mouse model of parenchymal β-amyloidosis and negligible CAA, rCBF is unchanged. Because synaptically driven spontaneous network activity is similar in both transgenic mouse strains, we conclude that the disease-related decline of rCBF is caused by CAA.
    Nature Medicine 11/2014; · 28.05 Impact Factor
  • Acta Neuropathologica 11/2014; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The soluble fraction of brain samples from patients with Alzheimer's disease contains highly biologically active amyloid-β seeds. In this study, we sought to assess the potency of soluble amyloid-β seeds derived from the brain and cerebrospinal fluid. Soluble Alzheimer's disease brain extracts were serially diluted and then injected into the hippocampus of young, APP transgenic mice. Eight months later, seeded amyloid-β deposition was evident even when the hippocampus received subattomole amounts of brain-derived amyloid-β. In contrast, cerebrospinal fluid from patients with Alzheimer's disease, which contained more than 10-fold higher levels of amyloid-β peptide than the most concentrated soluble brain extracts, did not induce detectable seeding activity in vivo. Similarly, cerebrospinal fluid from aged APP-transgenic donor mice failed to induce cerebral amyloid-β deposition. In comparison to the soluble brain fraction, cerebrospinal fluid largely lacked N-terminally truncated amyloid-β species and exhibited smaller amyloid-β-positive particles, features that may contribute to the lack of in vivo seeding by cerebrospinal fluid. Interestingly, the same cerebrospinal fluid showed at least some seeding activity in an in vitro assay. The present results indicate that the biological seeding activity of soluble amyloid-β species is orders of magnitude greater in brain extracts than in the cerebrospinal fluid.
    Brain 09/2014; · 10.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral β-amyloidosis can be exogenously induced by the intracerebral injection of brain extracts containing aggregated β-amyloid (Aβ) into young, pre-depositing Aβ precursor protein- (APP) transgenic mice. Previous work has shown that the induction involves a prion-like seeding mechanism in which the seeding agent is aggregated Aβ itself. Here we report that the β-amyloid-inducing activity of Alzheimer's disease (AD) brain tissue or aged APP-transgenic mouse brain tissue is preserved, albeit with reduced efficacy, after formaldehyde fixation. Moreover, spectral analysis with amyloid conformation-sensitive luminescent conjugated oligothiophene dyes reveals that the strain-like properties of aggregated Aβ are maintained in fixed tissues. The resistance of Aβ seeds to inactivation and structural modification by formaldehyde underscores their remarkable durability, which in turn may contribute to their persistence and spread within the body. The present findings can be exploited to establish the relationship between the molecular structure of Aβ aggregates and the variable clinical features and disease progression of AD even in archived, formalin-fixed autopsy material.
    Acta neuropathologica. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deposition of aggregated amyloid-β (Aβ) peptide in brain is an early event and hallmark pathology of Alzheimer's disease and cerebral Aβ angiopathy. Experimental evidence supports the concept that Aβ multimers can act as seeds and structurally corrupt other Aβ peptides by a self-propagating mechanism. Here we compare the induction of cerebral β-amyloidosis by intraperitoneal applications of Aβ-containing brain extracts in three Aβ-precursor protein (APP) transgenic mouse lines that differ in levels of transgene expression in brain and periphery (APP23 mice, APP23 mice lacking murine APP, and R1.40 mice). Results revealed that beta-amyloidosis induction, which could be blocked with an anti-Aβ antibody, was dependent on the amount of inoculated brain extract and on the level of APP/Aβ expression in the brain but not in the periphery. The induced Aβ deposits in brain occurred in a characteristic pattern consistent with the entry of Aβ seeds at multiple brain locations. Intraperitoneally injected Aβ could be detected in blood monocytes and some peripheral tissues (liver, spleen) up to 30 d after the injection but escaped histological and biochemical detection thereafter. These results suggest that intraperitoneally inoculated Aβ seeds are transported from the periphery to the brain in which corruptive templating of host Aβ occurs at multiple sites, most efficiently in regions with high availability of soluble Aβ.
    Journal of Neuroscience 07/2014; 34(31):10264-10273. · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.
    PLoS ONE 02/2014; 9(2):e90523. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological, genetic, and biochemical hallmarks of Alzheimer's disease (AD) are linked to amyloid-β (Aβ) peptide aggregation. Especially misfolded Aβ42 peptide is sufficient to promote amyloid plaque formation. However, the cellular compartment facilitating the conversion of monomeric Aβ to aggregated toxic Aβ species remains unknown. In vitro models suggest lipid membranes to be the driving force of Aβ conversion. To this end, we generated two novel mouse models, expressing either membrane-anchored or nonanchored versions of the human Aβ42 peptide. Strikingly, membrane-anchored Aβ42 robustly accelerated Aβ deposition and exacerbated amyloid-associated toxicity upon crossing with Aβ precursor protein transgenic mice. These in vivo findings support the hypothesis that Aβ-membrane interactions play a pivotal role in early-onset AD as well as neuronal damage and provide evidence to study Aβ-membrane interactions as therapeutic targets.
    Journal of Neuroscience 12/2013; 33(49):19284-94. · 6.75 Impact Factor
  • Mathias Jucker, Lary C Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: For several decades scientists have speculated that the key to understanding age-related neurodegenerative disorders may be found in the unusual biology of the prion diseases. Recently, owing largely to the advent of new disease models, this hypothesis has gained experimental momentum. In a remarkable variety of diseases, specific proteins have been found to misfold and aggregate into seeds that structurally corrupt like proteins, causing them to aggregate and form pathogenic assemblies ranging from small oligomers to large masses of amyloid. Proteinaceous seeds can therefore serve as self-propagating agents for the instigation and progression of disease. Alzheimer's disease and other cerebral proteopathies seem to arise from the de novo misfolding and sustained corruption of endogenous proteins, whereas prion diseases can also be infectious in origin. However, the outcome in all cases is the functional compromise of the nervous system, because the aggregated proteins gain a toxic function and/or lose their normal function. As a unifying pathogenic principle, the prion paradigm suggests broadly relevant therapeutic directions for a large class of currently intractable diseases.
    Nature 09/2013; 501(7465):45-51. · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The polymorphic β-amyloid lesions present in individuals with Alzheimer's disease are collectively known as cerebral β-amyloidosis. Amyloid precursor protein (APP) transgenic mouse models similarly develop β-amyloid depositions that differ in morphology, binding of amyloid conformation-sensitive dyes, and Aβ40/Aβ42 peptide ratio. To determine the nature of such β-amyloid morphotypes, β-amyloid-containing brain extracts from either aged APP23 brains or aged APPPS1 brains were intracerebrally injected into the hippocampus of young APP23 or APPPS1 transgenic mice. APPPS1 brain extract injected into young APP23 mice induced β-amyloid deposition with the morphological, conformational, and Aβ40/Aβ42 ratio characteristics of β-amyloid deposits in aged APPPS1 mice, whereas APP23 brain extract injected into young APP23 mice induced β-amyloid deposits with the characteristics of β-amyloid deposits in aged APP23 mice. Injecting the two extracts into the APPPS1 host revealed a similar difference between the induced β-amyloid deposits, although less prominent, and the induced deposits were similar to the β-amyloid deposits found in aged APPPS1 hosts. These results indicate that the molecular composition and conformation of aggregated Aβ in APP transgenic mice can be maintained by seeded conversion.
    EMBO Reports 09/2013; · 7.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microglia cells are essential for brain homeostasis and have essential roles in neurodegenerative diseases. Aging is the main risk factor for most neurodegenerative diseases and age-related changes in microglia may contribute to the susceptibility of the aging brain to dysfunction and neurodegeneration. We have analyzed morphology and dynamic behavior of neocortical microglia in their physiological environment in young adult (3 mo-old), adult (11-12 mo-old) and aged (26-27 mo-old) C57BL/6J-Iba1-eGFP mice using in vivo 2-photon microscopy. Results show that surveying microglial cells in the neocortex exhibit age-related soma volume increase, shortening of processes, and loss of homogeneous tissue distribution. Furthermore, microglial process speed significantly decreased with age. While only a small population of microglia showed soma movement in adult mice, the microglia population with soma movement was increased in aged mice. However, in response to tissue injury the dynamic microglial response was age- dependently diminished. These results provide novel insights into microglial behavior and indicate that microglial dysfunction in the aging brain may contribute to age-related cognitive decline and neurodegenerative diseases. This article is protected by copyright. All rights reserved.
    Aging cell 08/2013; · 7.55 Impact Factor
  • Stefan A Grathwohl, Mathias Jucker
    [Show abstract] [Hide abstract]
    ABSTRACT: Osmotic minipumps represent a convenient and established method for targeted delivery of agents into the brain of small rodents. Agents unable to cross the blood brain barrier can be directly infused into the brain parenchyma or lateral ventricle through implanted cannulas. The small volume of the minipump reservoir typically limits the infusion time to 4-6 weeks. Pump changes with reattachment of a new pump reservoir to the cannula might lead to brain tissue irritation or increased intracranial pressure associated with hydrocephalus. Here, we describe a pump reservoir exchange technique using a Y-shaped connection piece (Y-con) between the infusion cannula and the pump reservoir. This allows repeated replacement of a subcutaneously installed pump reservoir for brain delivery of agents in mice. Experimental evaluation of Y-con pump replacement revealed no signs of tissue irritation or hydrocephalus and allowed extended controlled delivery of infusion agents in the brain.
    BioTechniques 08/2013; 55(2):75-8. · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Altered concentrations of amyloid-β (Aβ) peptide and Tau protein in the cerebrospinal fluid (CSF) are thought to be predictive markers for Alzheimer's disease (AD). Transgenic mice overexpressing human amyloid precursor protein (APP) have been used to model Aβ pathology, but concomitant changes in Aβ and Tau in CSF have been less well studied. We measured Aβ and Tau in the brains and CSF of two well-characterized transgenic mouse models of AD: one expressing human APP carrying the Swedish mutation (APP23) and the other expressing mutant human APP and mutant human presenilin-1 (APPPS1). Both mouse models exhibit Aβ deposition in the brain, but with different onset and progression trajectories. We found an age-related 50 to 80% decrease in Aβ42 peptide in mouse CSF and a smaller decrease in Aβ40, both inversely correlated with the brain Aβ load. Surprisingly, the same mice showed a threefold increase in total endogenous murine Tau in CSF at the stages when Aβ pathology became prominent. The results mirror the temporal sequence and magnitude of Aβ and Tau changes in the CSF of patients with sporadic and dominantly inherited AD. This observation indicates that APP transgenic mice may be useful as a translational tool for predicting changes in Aβ and Tau markers in the CSF of AD patients. These findings also suggest that APP transgenic mouse models may be useful in the search for new disease markers for AD.
    Science translational medicine 07/2013; 5(194):194re2. · 14.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cramer et al. (Reports, 23 March 2012, p. 1503; published online 9 February 2012) reported that bexarotene rapidly reduces β-amyloid (Aβ) levels and plaque burden in two mouse models of Aβ deposition in Alzheimer's disease (AD). We now report that, although bexarotene reduces soluble Aβ40 levels in one of the mouse models, the drug has no impact on plaque burden in three strains that exhibit Aβ amyloidosis.
    Science 05/2013; 340(6135):924. · 31.48 Impact Factor
  • Lary C Walker, Mathias Jucker
    Scientific American 05/2013; 308(5):52-7. · 1.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deposition of aggregated Aβ peptide in the brain is one of the major hallmarks of Alzheimer's disease. Using a combination of two structurally different, but related, hypersensitive fluorescent amyloid markers, LCOs, reporting on separate ultrastructural elements, we show that conformational rearrangement occurs within Aβ plaques of transgenic mouse models as the animals age. This important mechanistic insight should aid the design and evaluation of experiments currently using plaque load as readout.
    ACS Chemical Biology 03/2013; · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Under most physiological circumstances, monocytes are excluded from parenchymal CNS tissues. When widespread monocyte entry occurs, their numbers decrease shortly after engraftment in the presence of microglia. However, some disease processes lead to focal and selective loss, or dysfunction, of microglia, and microglial senescence typifies the aged brain. In this regard, the long-term engraftment of monocytes in the microglia-depleted brain remains unknown. Here, we report a model in which a niche for myeloid cells was created through microglia depletion. We show that microglia-depleted brain regions of CD11b-HSVTK transgenic mice are repopulated with new Iba-1-positive cells within 2 wk. The engrafted cells expressed high levels of CD45 and CCR2 and appeared in a wave-like pattern frequently associated with blood vessels, suggesting the engrafted cells were peripheral monocytes. Although two times more numerous and morphologically distinct from resident microglia up to 27 wk after initial engraftment, the overall distribution of the engrafted cells was remarkably similar to that of microglia. Two-photon in vivo imaging revealed that the engrafted myeloid cells extended their processes toward an ATP source and displayed intracellular calcium transients. Moreover, the engrafted cells migrated toward areas of kainic acid-induced neuronal death. These data provide evidence that circulating monocytes have the potential to occupy the adult CNS myeloid niche normally inhabited by microglia and identify a strong homeostatic drive to maintain the myeloid component in the mature brain.
    Proceedings of the National Academy of Sciences 10/2012; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo imaging of pathological protein aggregates provides essential knowledge of the kinetics and implications of these lesions in the progression of proteopathies, such as Alzheimer's disease. Luminescent conjugated oligothiophenes are amyloid-specific ligands that bind and spectrally distinguish different types of amyloid aggregates. Herein, we report that heptamer formyl thiophene acetic acid (hFTAA) passes the blood-brain barrier after systemic administration and specifically binds to extracellular β-amyloid deposits in the brain parenchyma (Aβ plaques) and in the vasculature (cerebral β-amyloid angiopathy) of β-amyloid precursor protein transgenic APP23 mice. Moreover, peripheral application of hFTAA also stained intracellular lesions of hyperphosphorylated Tau protein in P301S Tau transgenic mice. Spectral profiling of all three amyloid types was acquired ex vivo using two-photon excitation. hFTAA revealed a distinct shift in its emission spectra when bound to Aβ plaques versus Tau lesions. Furthermore, a spectral shift was observed for Aβ plaques versus cerebral β-amyloid angiopathy, indicating that different amyloid types and structural variances of a specific amyloid type can be distinguished. In conclusion, by adding spectral signatures to amyloid lesions, our results pave the way for a new area of in vivo amyloid imaging, allowing in vivo differentiation of amyloid (sub)types and monitoring changes of their structure/composition over time.
    American Journal Of Pathology 10/2012; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although anti-human β-amyloid (Aβ) immunotherapy clears brain β-amyloid plaques in Alzheimer's disease (AD), targeting additional brain plaque constituents to promote clearance has not been attempted. Endogenous murine Aβ is a minor Aβ plaque component in amyloid precursor protein (APP) transgenic AD models, which we show is ∼3%-8% of the total accumulated Aβ in various human APP transgenic mice. Murine Aβ codeposits and colocalizes with human Aβ in amyloid plaques, and the two Aβ species coimmunoprecipitate together from brain extracts. In the human APP transgenic mouse model Tg2576, passive immunization for 8 weeks with a murine-Aβ-specific antibody reduced β-amyloid plaque pathology, robustly decreasing both murine and human Aβ levels. The immunized mice additionally showed improvements in two behavioral assays, odor habituation and nesting behavior. We conclude that passive anti-murine Aβ immunization clears Aβ plaque pathology-including the major human Aβ component-and decreases behavioral deficits, arguing that targeting minor endogenous brain plaque constituents can be beneficial, broadening the range of plaque-associated targets for AD therapeutics.
    Neurobiology of aging 05/2012; 34(1). · 5.94 Impact Factor
  • Source
    David Eisenberg, Mathias Jucker
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid fibers and oligomers are associated with a great variety of human diseases including Alzheimer's disease and the prion conditions. Here we attempt to connect recent discoveries on the molecular properties of proteins in the amyloid state with observations about pathological tissues and disease states. We summarize studies of structure and nucleation of amyloid and relate these to observations on amyloid polymorphism, prion strains, coaggregation of pathogenic proteins in tissues, and mechanisms of toxicity and transmissibility. Molecular studies have also led to numerous strategies for biological and chemical interventions against amyloid diseases.
    Cell 03/2012; 148(6):1188-203. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deposition of the amyloid-β (Aβ) peptide in senile plaques and cerebral Aβ angiopathy (CAA) can be stimulated in Aβ-precursor protein (APP)-transgenic mice by the intracerebral injection of dilute brain extracts containing aggregated Aβ seeds. Growing evidence implicates a prion-like mechanism of corruptive protein templating in this phenomenon, in which aggregated Aβ itself is the seed. Unlike prion disease, which can be induced de novo in animals that are unlikely to spontaneously develop the disease, previous experiments with Aβ seeding have employed animal models that, as they age, eventually will generate Aβ lesions in the absence of seeding. In the present study, we first established that a transgenic rat model expressing human APP (APP21 line) does not manifest endogenous deposits of Aβ within the course of its median lifespan (30 months). Next, we injected 3-month-old APP21 rats intrahippocampally with dilute Alzheimer brain extracts containing aggregated Aβ. After a 9-month incubation period, these rats had developed senile plaques and CAA in the injected hippocampus, whereas control rats remained free of such lesions. These findings underscore the co-dependence of agent and host in governing seeded protein aggregation, and show that cerebral Aβ-amyloidosis can be induced even in animals that are relatively refractory to the spontaneous origination of parenchymal and vascular deposits of Aβ.
    Journal of Neurochemistry 03/2012; 120(5):660-6. · 4.24 Impact Factor

Publication Stats

8k Citations
1,261.64 Total Impact Points

Institutions

  • 2013
    • Wisconsin National Primate Research Center
      Madison, Wisconsin, United States
  • 2006–2013
    • University of Tuebingen
      Tübingen, Baden-Württemberg, Germany
  • 2004–2013
    • Hertie-Institute for Clinical Brain Research
      Tübingen, Baden-Württemberg, Germany
  • 2012
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
    • Linköping University
      Linköping, Östergötland, Sweden
  • 2011
    • ETH Zurich
      • Department of Chemistry and Applied Biosciences
      Zürich, ZH, Switzerland
  • 2006–2011
    • Emory University
      • Department of Neurology
      Atlanta, GA, United States
  • 2008
    • Novartis Institutes for BioMedical Research
      Cambridge, Massachusetts, United States
  • 2004–2007
    • Goethe-Universität Frankfurt am Main
      • Dr. Senckenbergische Anatomie
      Frankfurt am Main, Hesse, Germany
  • 1997–2005
    • Universität Basel
      • • Institute of Geology and Paleontology
      • • Institut für Pathologie
      Bâle, Basel-City, Switzerland
  • 2002
    • Icahn School of Medicine at Mount Sinai
      Manhattan, New York, United States
    • Universitätsspital Basel
      Bâle, Basel-City, Switzerland
  • 1991–1999
    • National Institute on Aging
      • • Molecular Genetics Section
      • • Laboratory of Cellular and Molecular Biology (LCMB)
      Baltimore, Maryland, United States
  • 1994–1997
    • Eawag: Das Wasserforschungs-Institut des ETH-Bereichs
      Duebendorf, Zurich, Switzerland
  • 1996
    • Hamilton College
      • Department of Biology
      Clinton, New York, United States