Diana Frechilla

Universidad de Navarra, Iruña, Navarre, Spain

Are you Diana Frechilla?

Claim your profile

Publications (69)237.85 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the synthesis of new compounds 4-35 based on structural modifications of different moieties of previously described lead UCM-2550. The new nonpiperazine derivatives, representing second-generation agonists, were assessed for binding affinity, selectivity, and functional activity at the 5-HT(1A) receptor (5-HT(1A)R). Computational β(2)-based homology models of the ligand-receptor complexes were used to explain the observed structure-affinity relationships. Selected candidates were also evaluated for their potential in vitro and in vivo neuroprotective properties. Interestingly, compound 26 (2-{6-[(3,4-dihydro-2H-chromen-2-ylmethyl)amino]hexyl}tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione) has been characterized as a high-affinity and potent 5-HT(1A)R agonist (K(i) = 5.9 nM, EC(50) = 21.8 nM) and exhibits neuroprotective effect in neurotoxicity assays in primary cell cultures from rat hippocampus and in the MCAO model of focal cerebral ischemia in rats.
    Journal of Medicinal Chemistry 12/2011; 54(23):7986-99. DOI:10.1021/jm2007886 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The etiology of the more common (sporadic) forms of Alzheimer's disease (AD) remains unknown, although age is the most important risk factor. Nevertheless, interactions between environmental risk factors and genetic background may also influence the onset and progression of sporadic AD. Chronic stress, associated with altered memory and other neurological processes, is thought to influence the pathogenesis of AD. Hence, we evaluated the effect of unpredictable and consecutive chronic mild stressors on the onset of an AD-related pathology in the Tg2576 mouse line that overexpresses the human amyloid-β protein precursor with the Swedish mutation (hAβPP(Swe)). Two months after exposure to chronic mild stress, 4 month-old animals that normally display no pathological features of AD, not only expressed pathological markers but also experienced cognitive dysfunction in the Morris water maze test. These findings suggest that chronic mild stress accelerates the onset of cognitive impairment and produces an increase in hippocampal amyloid-β and phospho-tau levels on a background of AD susceptibility.
    Journal of Alzheimer's disease: JAD 11/2011; 28(3):567-78. DOI:10.3233/JAD-2011-110572 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was undertaken to know whether cognition deficits produced by chronic mild stress (CMS) were associated with pathological markers of Alzheimer's disease (AD). The results show that the impairment in the Morris water maze test induced by CMS correlated with an increase in CDK5-dependent phospho-tau levels and with an increase in APP processing. Mice exposed to CMS may then constitute a non-transgenic model for sporadic forms of AD.
    Behavioural brain research 07/2011; 220(2):338-43. DOI:10.1016/j.bbr.2011.01.005 · 3.39 Impact Factor
  • Alzheimer's and Dementia 07/2011; 7(4). DOI:10.1016/j.jalz.2011.05.2215 · 17.47 Impact Factor
  • Alzheimer's and Dementia 07/2011; 7(4). DOI:10.1016/j.jalz.2011.09.119 · 17.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial voltage-dependent anion channel 1 (VDAC1) is involved in the release of apoptotic proteins with possible relevance in Alzheimer's disease (AD) neuropathology. Through proteomic analysis followed by Western blotting and immunohistochemical techniques, we have found that VDAC1 is overexpressed in the hippocampus from amyloidogenic AD transgenic mice models. VDAC1 was also overexpressed in postmortem brain tissue from AD patients at an advanced stage of the disease. Interestingly, amyloid-β (Aβ) soluble oligomers were able to induce upregulation of VDAC1 in a human neuroblastoma cell line, further supporting a correlation between Aβ levels and VDAC1 expression. In hippocampal extracts from transgenic mice, a significant increase was observed in the levels of VDAC1 phosphorylated at an epitope that is susceptible to phosphorylation by glycogen synthase kinase-3β, whose activity was also increased. The levels of hexokinase I (HXKI), which interacts with VDAC1 and affects its function, were decreased in mitochondrial samples from AD models. Since phospho-VDAC and reduced HXKI levels favors a VDAC1 conformational state more prone to the release proapoptotic factors, regulation of the function of this channel may be a promising therapeutic approach to combat AD.
    Journal of Alzheimer's disease: JAD 10/2010; 23(2):195-206. DOI:10.3233/JAD-2010-100966 · 3.61 Impact Factor
  • Ana M Simón, Diana Frechilla, Joaquín del Río
    [Show abstract] [Hide abstract]
    ABSTRACT: The amyloid-beta peptide cascade hypothesis has provided a useful framework for the research on Alzheimer's disease for nearly 20 years. According to this hypothesis, an increase in amyloid-beta levels triggers all of the pathological features of the disease, including tau hyperphosphorylation, appearance of neurofibrillary tangles, synaptic dysfunction and neuronal cell death. Even though amyloid-beta peptide has an important role in the neurodegenerative process, different findings, such as the presence of abundant plaques in old cognitively normal individuals or the limited success of therapeutical approaches targeting only amyloid-beta, cast some doubt on a unique role for this peptide. At present, it is rather accepted that amyloid-beta peptide acts in parallel with other factors causing Alzheimer's disease that should be also considered at the time of designing useful therapeutic strategies.
    Revista de neurologia 06/2010; 50(11):667-75. · 0.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 05/2010; 25(22). DOI:10.1002/chin.199422167
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical studies suggest that agonists at peroxisome proliferator-activated receptor gamma (PPARgamma) may exert beneficial effects in patients with mild-to-moderate Alzheimer's disease (AD), but the mechanism for the potential therapeutic interest of this class of drugs has not yet been elucidated. Here, in mice overexpressing mutant human amyloid precursor protein, we found that chronic treatment with rosiglitazone, a high-affinity agonist at PPARgamma, facilitated beta-amyloid peptide (Abeta) clearance. Rosiglitazone not only reduced Abeta burden in the brain but, importantly, almost completely removed the abundant amyloid plaques observed in the hippocampus and entorhinal cortex of 13-month-old transgenic mice. In the hippocampus, neuropil threads containing phosphorylated tau, probably corresponding to dystrophic neurites, were also decreased by the drug. Rosiglitazone switched on the activated microglial phenotype, promoting its phagocytic ability, reducing the expression of proinflammatory markers and inducing factors for alternative differentiation. The decreased amyloid pathology may account for the reduction of p-tau-containing neuropil threads and for the rescue of impaired recognition and spatial memory in the transgenic mice. This study provides further insights into the mechanisms for the beneficial effect of rosiglitazone in AD patients.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 03/2010; 35(7):1593-604. DOI:10.1038/npp.2010.32 · 7.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2010; 23(4). DOI:10.1002/chin.199204199
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synapse loss occurs early in Alzheimer's disease (AD) and is considered the best pathological correlate of cognitive decline. Ephrins and Eph receptors are involved in regulation of excitatory neurotransmission and play a role in cytoskeleton remodeling. We asked whether alterations in Eph receptors could underlie cognitive impairment in an AD mouse model overexpressing human amyloid-beta protein precursor (hA beta PP) with familial mutations (hA beta PP swe-ind mice). We found that EphA4 and EphB2 receptors were reduced in the hippocampus before the development of impaired object recognition and spatial memory. Similar results were obtained in another line of transgenic A beta PP mice, Tg2576. A reduction in Eph receptor levels was also found in postmortem hippocampal tissue from patients with incipient AD. At the time of onset of memory decline inhA beta PP swe-ind mice, no change in surface expression of AMPA or NMDA receptor subunits was apparent, but we found changes in Eph-receptor downstream signaling, in particular a decrease in membrane-associated phosho-cofilin levels that may cause cytoskeletal changes and disrupted synaptic activity. Consistent with this finding, Eph receptor activation in cell culture increased phosho-cofilin levels. The results suggest that alterations in Eph receptors may play a role in synaptic dysfunction in the hippocampus leading to cognitive impairment in a model of AD.
    Journal of Alzheimer's disease: JAD 06/2009; 17(4):773-86. DOI:10.3233/JAD-2009-1096 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic mice expressing mutant human amyloid precursor protein (APP) develop an age-dependent amyloid pathology and memory deficits, but no overt neuronal loss. Here, in mice overexpressing wild-type human APP (hAPPwt) we found an early memory impairment, particularly in the water maze and to a lesser extent in the object recognition task, but β-amyloid peptide (Aβ42) was barely detectable in the hippocampus. In these mice, hAPP processing was basically non-amyloidogenic, with high levels of APP carboxy-terminal fragments, C83 and APP intracellular domain. A tau pathology with an early increase in the levels of phosphorylated tau in the hippocampus, a likely consequence of enhanced ERK1/2 activation, was also observed. Furthermore, these mice presented a loss of synapse-associated proteins: PSD95, AMPA and NMDA receptor subunits and phosphorylated CaMKII. Importantly, signs of neurodegeneration were found in the hippocampal CA1 subfield and in the entorhinal cortex that were associated to a marked loss of MAP2 immunoreactivity. Conversely, in mice expressing mutant hAPP, high levels of Aβ42 were found in the hippocampus, but no signs of neurodegeneration were apparent. The results support the notion of Aβ-independent pathogenic pathways in Alzheimer's disease.
    Neurobiology of Disease 03/2009; 33(3):369-378. DOI:10.1016/j.nbd.2008.11.005 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protective effects of insulin-like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β-amyloid (Aβ) injury may be mediated through its N-terminal tripeptide glycine-proline-glutamate (GPE). GPE is cleaved to cyclo[Pro-Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35-treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin-like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling.
    Journal of Neurochemistry 02/2009; 109(2):360 - 370. DOI:10.1111/j.1471-4159.2009.05980.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin modification through histone acetylation is a molecular pathway involved in the regulation of transcription underlying memory storage. Sodium 4-phenylbutyrate (4-PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. In this study, we report that administration of 4-PBA reversed spatial learning and memory deficits in an established mouse model of Alzheimer's disease (AD) without altering beta-amyloid burden. We also observed that the phosphorylated form of tau was decreased in the AD mouse brain after 4-PBA treatment, an effect probably due to an increase in the inactive form of the glycogen synthase kinase 3beta (GSK3beta). Interestingly, we found a dramatic decrease in brain histone acetylation in the transgenic mice that may reflect an indirect transcriptional repression underlying memory impairment. The administration of 4-PBA restored brain histone acetylation levels and, as a most likely consequence, activated the transcription of synaptic plasticity markers such as the GluR1 subunit of the AMPA receptor, PSD95, and microtubule-associated protein-2. The results suggest that 4-PBA, a drug already approved for clinical use, may provide a novel approach for the treatment of AD.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 02/2009; 34(7):1721-32. DOI:10.1038/npp.2008.229 · 7.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPARgamma) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPARgamma-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPARgamma activation in an AD mouse model.
    Biochemical and Biophysical Research Communications 02/2009; 379(2):406-10. DOI:10.1016/j.bbrc.2008.12.071 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of vascular wall in response to neuronal death was challenged here using a transient forebrain ischemia model in gerbil, which causes CA1 neuronal death and trigger neurogenesis in hippocampus. We found an important vascular reaction in CA1 5 days after ischemia evaluated by Von Willebrand factor and Vimentin immunoreactivity, as well as increased expression of angiogenic and neurogenic regulators: Vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). Analysing the morphology and cell phenotype by confocal microscopy, we confirmed the colocalization of the neurogenic markers (bromodeoxyuridine-neuronal nuclei-TOPRO-3) in newborn cells associated to vascular walls in CA1 and dentate gyrus of hippocampus 32 days after ischemia. The results indicate that vascular tissues may participate in neurogenesis after brain ischemia, reinforce the notion that blood vessels represent a source of neuronal progenitor cells in damaged brain areas and suggest that molecular and cellular manipulation of the vascular wall may expand the possibilities of novel regenerative therapies.
    International Journal of Developmental Neuroscience 11/2008; 26(6):541-50. DOI:10.1016/j.ijdevneu.2008.05.008 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied hippocampal cellular proliferation and neurogenesis processes in a model of transient global cerebral ischemia in gerbils by labelling dividing cells with 5'-Bromo-2'-deoxyuridine (BrdU). Surrounding the region of selective neuronal death (CA1 pyramidal layer of the hippocampus), an important increase in reactive astrocytes and BrdU-labelled cells was detected 5 days after ischemia. A similar result was found in the dentate gyrus (DG) 12 days after ischemia. The differentiation of the BrdU+ cells was investigated 28 days after BrdU administration by analyzing the morphology, anatomic localization and cell phenotype by triple fluorescent labelling (BrdU, adult neural marker NeuN and DNA marker TOPRO-3) using confocal laser-scanning microscopy. This analysis showed increased neurogenesis in the DG in case of ischemia and triple positive labelling in some newborn cells in CA1. Seven brain hemispheres from gerbils subjected to ischemia did not develop CA1 neuronal death; hippocampus from these hemispheres did not show any of the above mentioned findings. Our results indicate that ischemia triggers proliferation in CA1 and neurogenesis in the DG in response to CA1 pyramidal neuronal death, independently of the reduced cerebral blood flow or the cell migration from subventricular zone (SVZ).
    Neuroscience Research 06/2008; 61(1):27-37. DOI:10.1016/j.neures.2008.01.008 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of constrained pentapeptide analogues of the fragment Abeta(31-35) has been prepared using solid phase synthesis protocols. The results of conformational studies and surface plasmon resonance (SPR) experiments seem to indicate that the affinity of these constrained analogues for immobilized Abeta(25-35) peptide could be related to their ability to adopt a Leu34N-Ile31O beta-turn-like folded conformation.
    Bioorganic & medicinal chemistry letters 04/2008; 18(6):2078-82. DOI:10.1016/j.bmcl.2008.01.092 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is known that the activation of 5-hydroxytryptamine receptor type 1A (5HT(1A) receptor) may protect against brain damage induced by transient global ischemia. The biochemical mechanisms that underlie this neuroprotective effect remain however to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-d-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, and also stimulate the expression of brain-derived neurotrophic factor (BDNF), which is down-regulated in cerebral ischemia, we sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit and BDNF in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia and also the dramatic decrease in BDNF immunoreactivity observed in this area at an earlier time. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT(1A) receptor agonist. The results indicate that both NR1 subunit phosphorylation and the neurotrophin BDNF account, at least in part, for the neuroprotective effect of 8-OH-DPAT on cell damage induced by global ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.
    Brain Research 04/2008; 1199:159-66. DOI:10.1016/j.brainres.2007.12.032 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms involved in the neuroprotective effect of serotonin 5-HT1A receptor agonists on brain damage induced by ischemia remain to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-D-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, this study sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT1A receptor agonist. The results suggest that NR1 subunit phosphorylation plays a role in the neuroprotective effect of 8-OH-DPAT on cell damage induced by global cerebral ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.
    Journal of physiology and biochemistry 10/2007; 63(3):203-11. DOI:10.1007/BF03165783 · 2.50 Impact Factor

Publication Stats

1k Citations
237.85 Total Impact Points

Institutions

  • 1992–2011
    • Universidad de Navarra
      • • Division of Neurosciences
      • • School of Medicine
      • • Center for Applied Pharmacobiology Research (CIFA)
      Iruña, Navarre, Spain
  • 1991–2011
    • Universidad de Pamplona
      Памплона, Norte de Santander, Colombia
  • 2009
    • Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas
      Madrid, Madrid, Spain