Joshua Epstein

University of Arkansas at Little Rock, Little Rock, Arkansas, United States

Are you Joshua Epstein?

Claim your profile

Publications (104)745.81 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Highly activated/expanded natural killer (NK) cells can be generated by stimulation with the human leukocyte antigen-deficient cell line K562, genetically modified to express 41BB-ligand and membrane-bound interleukin (IL)15. We tested the safety, persistence, and activity of expanded NK cells generated from myeloma patients (auto-NK) or haploidentical family donors (allo-NK) in heavily pretreated patients with high-risk relapsing myeloma. The preparative regimen comprised bortezomib only or bortezomib and immunosuppression with cyclophosphamide, dexamethasone, and fludarabine. NK cells were shipped overnight either cryopreserved or fresh. In 8 patients, up to 1×10 NK cells/kg were infused on day 0 and followed by daily administrations of IL2. Significant in vivo expansion was observed only in the 5 patients receiving fresh products, peaking at or near day 7, with the highest NK-cell counts in 2 subjects who received cells produced in a high concentration of IL2 (500 U/mL). Seven days after infusion, donor NK cells comprised >90% of circulating leukocytes in fresh allo-NK cell recipients, and cytolytic activity against allogeneic myeloma targets was retained in vitro. Among the 7 evaluable patients, there were no serious adverse events that could be related to NK-cell infusion. One patient had a partial response and in another the tempo of disease progression decreased; neither patient required further therapy for 6 months. In the 5 remaining patients, disease progression was not affected by NK-cell infusion. In conclusion, infusion of large numbers of expanded NK cells was feasible and safe; infusing fresh cells was critical to their expansion in vivo.
    Journal of immunotherapy (Hagerstown, Md.: 1997) 11/2014; · 3.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examine whether the historical dogma of multiple myeloma being incurable still holds true. The genomic chaos and resulting resistance to apoptosis of myeloma, long considered an obstacle to cure, formed the basis of the Arkansas Total Therapy (TT) program. The TT approach employs all myeloma-active drugs up-front to target drug-resistant sub-clones during initial treatment to prevent later relapse. Long-term follow up of altogether 1202 patients enrolled (TT1: n=231, median follow up: 21yr; TT2: 668, median follow up: 12yr; TT3a: n=303, median follow up: 9yr) permitted investigation of whether progression-free survival (PFS) and complete response (CR) duration were consistent with curability, i.e. observation of plateaus in Kaplan-Meier plots for PFS and CR duration. In the subset of 627 patients with plasma cell gene expression profiling data, cure plateaus were apparent at 5 years in the 14% with high-risk myeloma compared to 10 years in the remainder with low-risk disease. A parametric model based on PFS and CR duration supported an increase in curability with successive trials. Thus, 10-yr PFS and CR estimates increased from 8.8%/17.9% in TT1 to 15.5%/28.2% in TT2's control arm to 25.1%/35.6% in TT2's thalidomide arm and to 32.9/48.8% in TT3a. Toward developing novel therapies, we recommend a concerted focus on patients with high-risk myeloma whose outcome has not been advanced.
    Blood 10/2014; · 9.78 Impact Factor
  • Blood 09/2014; 124(12):2001-3. · 9.78 Impact Factor
  • Leukemia. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Secreted protein CCN1, encoded by CYR61, is involved in wound healing, angiogenesis, and osteoblast differentiation. We identified CCN1 as a microenvironmental factor produced by mesenchymal cells and overexpressed in bones of a subset of patients with monoclonal gammopathy of undetermined significance (MGUS), asymptomatic myeloma (AMM), and multiple myeloma (MM). Our analysis showed that overexpression of CYR61 was independently associated with superior overall survival of MM patients enrolled in our Total Therapy 3 protocol. Moreover, elevated CCN1 was associated with longer time for MGUS/AMM to progress to overt MM. During remission from MM, high levels of CCN1 were associated with superior progression-free and overall survival and stratified patients with molecularly defined high-risk MM. Recombinant CCN1 directly inhibited in vitro growth of MM cells, and overexpression of CYR61 in MM cells reduced tumor growth and prevented bone destruction in vivo in SCID-hu mice. Signaling through αvβ3 was required for CCN1 prevention of bone disease. CYR61 expression may signify early perturbation of the microenvironment before conversion to overt MM and may be a compensatory mechanism to control MM progression. Therapeutics that upregulate CYR61 should be investigated for treating MM bone disease.
    Blood 07/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although novel drugs have contributed immensely to improving outcomes of patients with multiple myeloma (MM), many patients develop drug resistance and ultimately succumb to MM. Here, we show that artesunate, an anti-malarial drug, reliably induces cell death in vitro in naïve as well as drug-resistant MM cells at concentrations shown to be safe in humans. Artesunate induced apoptosis predominantly through the non-caspase mediated pathway by primarily targeting mitochondria and causing outer mitochondrial membrane permeabilization that led to cytosolic and subsequent nuclear translocation of mitochondrial proteins apoptosis inducing factor (AIF) and endonuclease G (EndoG). Nuclear translocation of AIF and EndoG was accompanied by low levels of reactive oxygen species (ROS) and increased mitochondrial production of superoxide. These effects were present before apoptosis was evident and were related to intracellular levels of bivalent iron (Fe+2). Artesunate's unique mechanism probably was at least partially responsible for, its ability to act synergistically with multiple anti-myeloma agents. Our findings suggest that artesunate acts through iron to affect the mitochondria and induce low ROS and non-caspase-mediated apoptosis. Its potency, toxicity profile, and synergism with other drugs make it an intriguing new candidate for MM treatment.
    Oncotarget 03/2014; · 6.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In studies of patients with multiple myeloma (MM), gene expression profiling (GEP) of myeloma cells demonstrates substantially higher expression of MMSET, FGFR3, CCND3, CCND1, MAF, and MAFB-the partner genes of 14q32 translocations-than GEP of plasma cells from healthy individuals. Interphase fluorescent in situ hybridization (FISH) was used to discriminate between chromosomal translocations involving different regions of the immunoglobulin heavy chain (IGH) genes at 14q32. With special probes designed for the constant region (IGHC) and the variable region (IGHV), IGH translocations were shown to be definite, nonrandom chromosomal fusions of IGHC with the loci of FGFR3, CCND1, CCND3, MAF, and MAFB genes; and IGHV with the locus of MMSET gene. When correlated with GEP results, the IGH translocations were found to drive expression levels of the partner genes to significantly higher levels (spikes) than copy-number variations. Hence, 42% of IGH translocations were identified among newly diagnosed MM patients (448/1,060). As GEP has become essential for assessing cancer risk, this novel approach is highly consistent with the cytogenetic features of the chromosomal translocations to effectively stratify molecular subgroups of MM on the basis of gene expression profiles of the IGH translocation partner genes in myeloma cells. © 2014 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 03/2014; · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple myeloma (MM) is a B-cell malignancy driven in part by increasing copy number alterations (CNAs) during disease progression. Prognostically significant CNAs accumulate during clonal evolution and include gains of 1q21 and deletions of 17p, among others. Unfortunately, the mechanisms underlying the accumulation of CNAs and resulting subclonal heterogeneity in high-risk MM are poorly understood. To investigate the impact of jumping translocations of 1q12 (JT1q12) on receptor chromosomes (RC) and subsequent clonal evolution, we analyzed specimens from 86 patients selected for unbalanced 1q12 aberrations by G-banding. Utilizing spectral karyotyping and locus specific fluorescence in situ hybridization, we identified ten patients with unexpected focal amplifications of a RC which subsequently translocated as part of a sequential JT1q12 to one or more additional RCs. Four patients exhibited amplification and translocation of 8q24 (MYC), three showed amplification of 16q11, and one each displayed amplification of 18q21.3 (BCL2), 18q23, or 4p16 (FGFR3). Unexpectedly, in six of fourteen patients with the combination of the t(4;14) and deletion of 17p, we identified the loss of 17p as resulting from a JT1q12. Here we provide evidence that the JT1q12 is a mechanism for the simultaneous gain of 1q21 and deletion of 17p in cytogenetically defined high-risk disease.
    Blood 02/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bruton's tyrosine kinase (BTK) and the chemokine receptor CXCR4 are linked in various hematologic malignancies. The aim of the study was to understand the role of BTK in myeloma cell growth and metastasis using the stably BTK knockdown luciferase-expressing INA6 myeloma line. BTK knockdown had reduced adhesion to stroma and migration of myeloma cells toward stromal cell-derived factor-1. BTK knockdown had no effect on short-term in vitro growth of myeloma cells, although clonogenicity was inhibited and myeloma cell growth was promoted in coculture with osteoclasts. In severe combined immunodeficient-rab mice with contralaterally implanted pieces of bones, BTK knockdown in myeloma cells promoted their proliferation and growth in the primary bone but suppressed metastasis to the contralateral bone. BTK knockdown myeloma cells had altered the expression of genes associated with adhesion and proliferation and increased mammalian target of rapamycin signaling. In 176 paired clinical samples, BTK and CXCR4 expression was lower in myeloma cells purified from a focal lesion than from a random site. BTK expression in random-site samples was correlated with proportions of myeloma cells expressing cell surface CXCR4. Our findings highlight intratumoral heterogeneity of myeloma cells in the bone marrow microenvironment and suggest that BTK is involved in determining proliferative, quiescent or metastatic phenotypes of myeloma cells.Blood Cancer Journal (2014) 4, e234; doi:10.1038/bcj.2014.54.
    Blood Cancer Journal 01/2014; 4:e234. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lenalidomide has been linked to MDS after auto-transplants for myeloma. Total Therapy trials, TT2 (-/+ thalidomide) and TT3 (TT3a with bortezomib, thalidomide; TT3b with additional lenalidomide), offered the opportunity to examine these immune-modulatory agents' contribution to MDS-associated cytogenetic abnormalities (MDS-CA) and clinical MDS or acute leukemia ("clinical MDS/AL"). Of 1080 patients with serial cytogenetic studies, MDS-CA occurred in 11% and clinical MDS/AL in 3%. Risk features of MDS-CA included TT3b, age >=65yr, male sex, B2M >5.5 mg/L and MM relapse. Clinical MDS/AL occurred less frequently on the control arm of TT2 and more often with TT3a and TT3b. Since MDS-CA often antedated clinical disease, periodic cytogenetic monitoring is recommended. Higher CD34 quantities should be collected upfront as the risk of MDS could be reduced by applying higher CD34 doses with transplant. Thus, treatment, host and myeloma features could be linked to MDS development after therapy for this malignancy. (www.clinicaltrials.gov: TT3A: NCT00081939, TT3B: NCT00572169).
    Blood 04/2013; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton's tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL)-6- or stroma-dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n=33, r=0.81, p<0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. Am. J. Hematol., 2013. © 2013 Wiley Periodicals, Inc.
    American Journal of Hematology 03/2013; · 4.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD(+)) not only is essential for cellular metabolism but also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD(+) biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and in MM patients' plasma cells than in healthy donors' counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD(+). APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD(+) content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD(+) or NAM. APO866 inhibited NF-kB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD(+) depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM.
    Experimental Hematology 02/2013; · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD(+)) not only is essential for cellular metabolism but also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD(+) biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and in MM patients' plasma cells than in healthy donors' counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD(+). APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD(+) content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD(+) or NAM. APO866 inhibited NF-kB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD(+) depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM.
    Experimental hematology 02/2013; · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carfilzomib, the next generation of proteasome inhibitor, may increase osteoblast-related markers in patients with multiple myeloma, but the molecular mechanism of its effect on mesenchymal stem cell differentiation to osteoblasts remains unknown. Herein, we demonstrated that carfilzomib significantly promoted mesenchymal stem cell differentiation into osteoblasts. In osteoprogenitor cells and primary mesenchymal stem cells from patients with myeloma, carfilzomib induced increases in alkaline phosphatase activity, matrix mineralization, and calcium deposition via Wnt-independent activation of β-catenin/TCF signaling. Using affinity pull-down assays with immunoblotting analysis and immunofluorescence, we found that carfilzomib induced stabilization of both free and active forms of β-catenin in a time- and dose-dependent manner that was not associated with β-catenin transcriptional regulation. Nuclear translocation of β-catenin protein was associated with TCF transcriptional activity that was independent of the effects of GSK3β-activation and of signaling induced by 19 Wnt ligands, 10 Frizzled receptors, and LRP5/6 co-receptors. Blocking activation of β-catenin/TCF signaling by dominant negative TCF1 or TCF4 attenuated carfilzomib-induced matrix mineralization. Thus, carfilzomib induced osteoblast differentiation via Wnt-independent activation of the β-catenin/TCF pathway. These results provide a novel molecular mechanism critical to understanding the anabolic role of carfilzomib on myeloma-induced bone disease.
    PLoS ONE 01/2013; 8(9):e74191. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because dexamethasone remains a key component of myeloma therapy, we wished to examine the impact of baseline and relapse expression levels of the glucocorticoid receptor gene NR3C1 on survival outcomes in the context of treatment with or without thalidomide. We investigated the clinical impact of gene expression profiling (GEP)-derived expression levels of NR3C1 in 351 patients with GEP data available at baseline and in 130 with data available at relapse, among 668 subjects accrued to total therapy 2 (TT2). Low NR3C1 expression levels had a negative impact on progression-free survival (PFS; HR, 1.47; P = 0.030) and overall survival (OS; HR, 1.90; P = 0.002) in the no-thalidomide arm. Conversely, there was a significant clinical benefit of thalidomide for patients with low receptor levels (OS: HR, 0.54; P = 0.015; PFS: HR, 0.54; P = 0.004), mediated most likely by thalidomide's upregulation of NR3C1. In the context of both baseline and relapse parameters, post-relapse survival (PRS) was adversely affected by low NR3C1 levels at relapse in a multivariate analysis (HR, 2.61; P = 0.012). These findings justify the inclusion of NR3C1 expression data in the work-up of patients with myeloma as it can significantly influence the choice of therapy and, ultimately, OS. The identification of an interaction term between thalidomide and NR3C1 underscores the importance of pharmacogenomic studies in the systematic study of new drugs. Clin Cancer Res; 18(19); 5499-506. ©2012 AACR.
    Clinical Cancer Research 08/2012; 18(19):5499-506. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone disease in patients with multiple myeloma (MM) is characterized by increase in the numbers and activity of bone-resorpting osteoclasts and decrease in the number and function of bone-formation osteoblasts. MM-triggered inhibition of bone formation may stem from suppression of Wnt/β-catenin signaling, a pivotal pathway in the differentiation of mesenchymal stem cells (MSC) into osteoblasts, and regulating production of receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) axis by osteoblasts. Proteasome inhibitors (PIs), such as bortezomib (Bz), induce activation of Wnt/β-catenin pathway and MSC differentiation toward osteoblasts. PIs also suppress osteoclastogenesis, possibly through regulating multiple pathways including NF-κB, Bim, and the ratio of RANKL/OPG. The critical role of PI in increasing osteoblast function and suppression of osteoclast activity is highlighted by clinical evidence of increases in bone formation and decreases in bone resorption makers. This review will discuss the function of PIs in stimulating bone formation and suppression of bone resorption, and the mechanism underlying this process that leads to inhibition bone disease in MM patients.
    Seminars in Hematology 07/2012; 49(3):243-8. · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Multiple myeloma causes major morbidity resulting from osteolytic lesions that can be detected by metastatic bone surveys. Magnetic resonance imaging and positron emission tomography can detect bone marrow focal lesions long before development of osteolytic lesions.Design and Methods: Using data from patients enrolled in Total Therapy 3 for newly diagnosed myeloma (N=303), we analyzed associations of these imaging techniques with baseline standard laboratory variables assessed before initiating treatment. Of 270 patients with complete imaging data, 245 also had gene expression profiling data. Results. Osteolytic lesions detected on metastatic bone surveys correlated with focal lesions detected by magnetic resonance imaging and positron emission tomography, although, in two-way comparisons, focal lesion counts based on both magnetic resonance imaging and positron emission tomography tended to be greater than those based on metastatic bone survey. Higher numbers of focal lesions detected by magnetic resonance imaging and positron emission tomography were positively linked to high serum concentrations of C-reactive protein, gene-expression-profiling-defined high risk, and the Proliferation molecular subgroup. Positron emission tomography focal lesion maximum standardized unit values were significantly correlated with gene-expression-profiling-defined high risk and higher numbers of focal lesions detected by positron emission tomography. Interestingly, four genes associated with high-risk disease (related to cell cycle and metabolism) were linked to counts of focal lesions detected by magnetic resonance imaging and positron emission tomography. Conclusions. Collectively, our results demonstrate significant associations of all three imaging techniques with tumor burden and, especially, disease aggressiveness captured by gene-expression-profiling-risk designation. (clinicaltrials.gov identifier: NCT00081939).
    Haematologica 06/2012; · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytogenetic abnormalities are important clinical parameters in various types of cancer, including multiple myeloma. We developed a model to predict cytogenetic abnormalities in patients with multiple myeloma using gene expression profiling and validated it by different cytogenetic techniques. The model has an accuracy rate up to 0.89. These results provide proof of concept for the hypothesis that gene expression profiling is a superior genomic method for clinical molecular diagnosis and/or prognosis.
    Blood 04/2012; 119(21):e148-50. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Patients with gene expression profiling-defined high-risk myeloma in relapse have poor outcomes with current therapies. We tested whether natural killer cells expanded by co-culture with K562 cells transfected with 41BBL and membrane-bound interleukin-15 could kill myeloma cells with a high-risk gene expression profile in vitro and in a unique model which recapitulates human myeloma. DESIGN AND METHODS: OPM2 and high-risk primary myeloma tumors were grown in human fetal bone implanted into non-obese diabetic severe combined immunodeficiency mice with a deficient interleukin-2 receptor gamma chain. These mice are devoid of endogenous natural killer and T-cell activity and were used to determine whether adoptively transferred expanded natural killer cells could inhibit myeloma growth and myeloma-associated bone destruction. RESULTS: Natural killer cells from healthy donors and myeloma patients expanded a median of 804- and 351-fold, respectively, without significant T-cell expansion. Expanded natural killer cells killed both allogeneic and autologous primary myeloma cells avidly via a perforin-mediated mechanism in which the activating receptor NKG2D, natural cytotoxicity receptors, and DNAX-accessory molecule-1 played a central role. Adoptive transfer of expanded natural killer cells inhibited the growth of established OPM2 and high-risk primary myeloma tumors grown in the murine model. The transferred, expanded natural killer cells proliferated in vivo in an interleukin-2 dose-dependent fashion, persisted up to 4 weeks, were readily detectable in the human bone, inhibited myeloma growth and protected bone from myeloma-induced osteolysis. Conclusions These studies provide the rationale for testing expanded natural killer cells in humans.
    Haematologica 03/2012; 97(9):1348-56. · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-6 signaling can be enhanced through transsignaling by the soluble IL-6 receptor (sIL-6r), allowing for the pleiotropic cytokine to affect cells it would not ordinarily have an effect on. Serum levels of sIL-6r can be used as an independent prognostic indicator and further stratify the GEP 70-gene low-risk group to identify an intermediate-risk group in multiple myeloma (MM). By analyzing more than 600 MM patients with ELISA, genotyping, and gene expression profiling tools, we show how the combination of 2 independent molecular genetic events is related to synergistic increases in sIL-6r levels. We also show that the rs2228145 minor allele is related to increased expression levels of an IL-6r splice variant that purportedly codes exclusively for a sIL-6r isoform. Together, the SNP rs2228145 minor allele C and amplification of chromosome 1q21 are significantly correlated to an increase in sIL-6r levels, which are associated with lower overall survival in 70-gene low-risk disease, and aid in identification of the intermediate-risk MM group.
    Blood 11/2011; 119(2):503-12. · 9.78 Impact Factor

Publication Stats

6k Citations
745.81 Total Impact Points

Institutions

  • 1990–2014
    • University of Arkansas at Little Rock
      Little Rock, Arkansas, United States
  • 1996–2013
    • University of Arkansas for Medical Sciences
      • Division of Hematology/Oncology
      Little Rock, Arkansas, United States
  • 2007–2009
    • University of Alabama at Birmingham
      • Department of Pathology
      Birmingham, AL, United States
  • 2008
    • Cancer Research and Biostatistics
      Seattle, Washington, United States
  • 1988–2007
    • University of Texas MD Anderson Cancer Center
      • Division of Cancer Medicine
      Houston, TX, United States
    • University of Texas Health Science Center at Houston
      Houston, Texas, United States