Hunter B Fraser

University of Toronto, Toronto, Ontario, Canada

Are you Hunter B Fraser?

Claim your profile

Publications (48)613.03 Total impact

  • Carlo G Artieri, Hunter B Fraser
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent advent of ribosome profiling - sequencing of short ribosome-bound fragments of mRNA - has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling dataset have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling.
    Genome research. 10/2014;
  • Source
    Carlo G Artieri, Hunter B Fraser
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the greater functional importance of protein levels, our knowledge of gene expression evolution is based almost entirely on studies of mRNA levels. In contrast, our understanding of how translational regulation evolves has lagged far behind. Here we have applied ribosome profiling- which measures both global mRNA levels and their translation rates- to two species of Saccharomyces yeast and their interspecific hybrid in order to assess the relative contributions of changes in mRNA abundance and translation to regulatory evolution. We report that both cis and trans-acting regulatory divergence in translation are abundant, affecting at least 35% of genes. The majority of translational divergence acts to buffer changes in mRNA abundance, suggesting a widespread role for stabilizing selection acting across regulatory levels. Nevertheless, we observe evidence of lineage-specific selection acting on a number of yeast functional modules, including instances of reinforcing selection acting at both levels of regulation. Finally, we also uncover multiple instances of stop-codon readthrough that are conserved between species. Our analysis reveals the underappreciated complexity of post-transcriptional regulatory divergence and indicates that partitioning the search for the locus of selection into the binary categories of 'coding' vs. 'regulatory' may overlook a significant source of selection, acting at multiple regulatory levels along the path from genotype to phenotype.
    Genome Research 12/2013; · 14.40 Impact Factor
  • Source
    Hunter B Fraser
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic DNA replication follows a specific temporal program, with some genomic regions consistently replicating earlier than others, yet what determines this program is largely unknown. Highly transcribed regions have been observed to replicate in early S-phase in all plant and animal species studied to date, but this relationship is thought to be absent from both budding yeast and fission yeast. No association between cell-cycle regulated transcription and replication timing has been reported for any species. Here I show that in budding yeast, fission yeast, and human, the genes most highly transcribed during S-phase replicate early, whereas those repressed in S-phase replicate late. Transcription during other cell-cycle phases shows either the opposite correlation with replication timing, or no relation. The relationship is strongest near late-firing origins of replication, which is not consistent with a previously proposed model---that replication timing may affect transcription---and instead suggests a potential mechanism involving the recruitment of limiting replication initiation factors during S-phase. These results suggest that S-phase transcription may be an important determinant of DNA replication timing across eukaryotes, which may explain the well-established association between transcription and replication timing.
    Genome biology 10/2013; 14(10):R111. · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent advances in our ability to detect adaptive evolution involving the cis-regulation of gene expression, our knowledge of the molecular mechanisms underlying these adaptations has lagged far behind. Across all model organisms, the causal mutations have been discovered for only a handful of gene expression adaptations, and even for these, mechanistic details (e.g. the trans-regulatory factors involved) have not been determined. We previously reported a polygenic gene expression adaptation involving down-regulation of the ergosterol biosynthesis pathway in the budding yeast Saccharomyces cerevisiae. Here we investigate the molecular mechanism of a cis-acting mutation affecting a member of this pathway, ERG28. We show that the causal mutation is a two-base deletion in the promoter of ERG28 that strongly reduces the binding of two transcription factors, Sok2 and Mot3, thus abolishing their regulation of ERG28. This down-regulation increases resistance to a widely used antifungal drug targeting ergosterol, similar to mutations disrupting this pathway in clinical yeast isolates. The identification of the causal genetic variant revealed that the selection likely occurred after the deletion was already present at high frequency in the population, rather than when it was a new mutation. These results provide a detailed view of the molecular mechanism of a cis-regulatory adaptation, and underscore the importance of this view to our understanding of evolution at the molecular level.
    PLoS Genetics 09/2013; 9(9):e1003813. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measuring natural selection on genomic elements involved in the cis-regulation of gene expression-such as transcriptional enhancers and promoters-is critical for understanding the evolution of genomes, yet it remains a major challenge. Many studies have attempted to detect positive or negative selection in these noncoding elements by searching for those with the fastest or slowest rates of evolution, but this can be problematic. Here we introduce a new approach to this issue, and demonstrate its utility on three mammalian transcriptional enhancers. Using results from saturation mutagenesis studies of these enhancers, we classified all possible point mutations as up-regulating, down-regulating, or silent, and determined which of these mutations have occurred on each branch of a phylogeny. Applying a framework analogous to Ka/Ks in protein-coding genes, we measured the strength of selection on up-regulating and down-regulating mutations, in specific branches as well as entire phylogenies. We discovered distinct modes of selection acting on different enhancers: while all three have experienced negative selection against down-regulating mutations, the selection pressures on up-regulating mutations vary. In one case we detected positive selection for up-regulation, while the other two had no detectable selection on up-regulating mutations. Our methodology is applicable to the growing number of saturation mutagenesis data sets, and provides a detailed picture of the mode and strength of natural selection acting on cis-regulatory elements.
    Molecular Biology and Evolution 07/2013; · 14.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The order of genes along metazoan chromosomes has generally been thought to be largely random, with few implications for organismal function. However, two recent studies, reporting hundreds of pairs of genes that have remained linked in diverse metazoan species over hundreds of millions of years of evolution, suggest widespread functional implications for gene order. These associations appear to largely reflect cis-regulatory constraints, with either (i) multiple genes sharing transcriptional regulatory elements, or (ii) regulatory elements for a developmental gene being found within a neighboring 'bystander' gene (known as a genomic regulatory block). We discuss implications, questions raised, and new research directions arising from these studies, as well as evidence for similar phenomena in other eukaryotic groups.
    Trends in Genetics 06/2013; · 9.77 Impact Factor
  • Proceedings of the National Academy of Sciences 04/2013; 110(14):E1247. · 9.81 Impact Factor
  • Hunter B Fraser
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular basis of adaptation, and in particular the relative roles of protein-coding vs. gene expression changes, has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative "local adaptations" that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation.
    Genome Research 03/2013; · 14.40 Impact Factor
  • Source
    Carlo G. Artieri, Hunter B. Fraser
    [Show abstract] [Hide abstract]
    ABSTRACT: The time required to transcribe genes with long primary transcripts may limit their ability to be expressed in cells with short mitotic cycles, a phenomenon termed intron delay. As such short cycles are a hallmark of the earliest stages of insect development, we used Drosophila developmental timecourse expression data to test whether intron delay affects gene expression genome-wide, and to determine its consequences for the evolution of gene structure. We find that long zygotically expressed, but not maternally deposited, genes show substantial delay in expression relative to their shorter counterparts and that this delay persists over a substantial portion of the ~24 hours of embryogenesis. Patterns of RNA-seq coverage from the 5' and 3' ends of transcripts show that this delay is consistent with their inability to terminate transcription, but not with transcriptional initiation-based regulatory control. Highly expressed zygotic genes are subject to purifying selection to maintain compact transcribed regions, allowing conservation of embryonic expression patterns across the Drosophila phylogeny. We propose that intron delay is an underappreciated physical mechanism affecting both patterns of expression as well as gene structure of many genes across Drosophila.
    Molecular Biology and Evolution 01/2013; · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Phenotypic evolution in animals is thought to be driven in large part by differences in gene expression patterns, which can result from sequence changes in cis-regulatory elements (cis-changes) or from changes in the expression pattern or function of transcription factors (trans-changes). While isolated examples of trans-changes have been identified, the scale of their overall contribution to regulatory and phenotypic evolution remains unclear. RESULTS: Here, we attempt to examine the prevalence of trans-effects and their potential impact on gene expression patterns in vertebrate evolution by comparing the function of identical human tissue-specific enhancer sequences in two highly divergent vertebrate model systems, mouse and zebrafish. Among 47 human conserved non-coding elements (CNEs) tested in transgenic mouse embryos and in stable zebrafish lines, at least one species-specific expression domain was observed in the majority (83%) of cases, and 36% presented dramatically different expression patterns between the two species. Although some of these discrepancies may be due to the use of different transgenesis systems in mouse and zebrafish, in some instances we found an association between differences in enhancer activity and changes in the endogenous gene expression patterns between mouse and zebrafish, suggesting a potential role for trans-changes in the evolution of gene expression. CONCLUSIONS: In total, our results: (i) serve as a cautionary tale for studies investigating the role of human enhancers in different model organisms, and (ii) suggest that changes in the trans environment may play a significant role in the evolution of gene expression in vertebrates.
    BMC Genomics 12/2012; 13(1):713. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetics is emerging as an attractive mechanism to explain the persistent genomic embedding of early-life experiences. Tightly linked to chromatin, which packages DNA into chromosomes, epigenetic marks primarily serve to regulate the activity of genes. DNA methylation is the most accessible and characterized component of the many chromatin marks that constitute the epigenome, making it an ideal target for epigenetic studies in human populations. Here, using peripheral blood mononuclear cells collected from a community-based cohort stratified for early-life socioeconomic status, we measured DNA methylation in the promoter regions of more than 14,000 human genes. Using this approach, we broadly assessed and characterized epigenetic variation, identified some of the factors that sculpt the epigenome, and determined its functional relation to gene expression. We found that the leukocyte composition of peripheral blood covaried with patterns of DNA methylation at many sites, as did demographic factors, such as sex, age, and ethnicity. Furthermore, psychosocial factors, such as perceived stress, and cortisol output were associated with DNA methylation, as was early-life socioeconomic status. Interestingly, we determined that DNA methylation was strongly correlated to the ex vivo inflammatory response of peripheral blood mononuclear cells to stimulation with microbial products that engage Toll-like receptors. In contrast, our work found limited effects of DNA methylation marks on the expression of associated genes across individuals, suggesting a more complex relationship than anticipated.
    Proceedings of the National Academy of Sciences 10/2012; 109 Suppl 2:17253-60. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The order of genes in eukaryotic genomes has generally been assumed to be neutral, since gene order is largely scrambled over evolutionary time. Only a handful of exceptional examples are known, typically involving deeply conserved clusters of tandemly duplicated genes (e.g. Hox genes and histones). Here we report the first systematic survey of microsynteny conservation across metazoans, utilizing 17 genome sequences. We identified nearly 600 pairs of unrelated genes that have remained tightly physically linked in diverse lineages across over 600 million years of evolution. Integrating sequence conservation, gene expression data, gene function, epigenetic marks, and other genomic features, we provide extensive evidence that many conserved ancient linkages involve (i) the coordinated transcription of neighboring genes, or (ii) Genomic Regulatory Blocks (GRBs) in which transcriptional enhancers controlling developmental genes are contained within nearby bystander genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos, which provided further evidence of putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results suggest that ancient genomic functional associations are far more common than previously thought - involving ~12% of the ancestral bilaterian genome - and that cis-regulatory constraints are crucial in determining metazoan genome architecture.
    Genome Research 06/2012; · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The acquisition of new genes, via horizontal transfer or gene duplication/diversification, has been the dominant mechanism thus far implicated in the evolution of microbial pathogenicity. In contrast, the role of many other modes of evolution-such as changes in gene expression regulation-remains unknown. A transition to a pathogenic lifestyle has recently taken place in some lineages of the budding yeast Saccharomyces cerevisiae. Here we identify a module of physically interacting proteins involved in endocytosis that has experienced selective sweeps for multiple cis-regulatory mutations that down-regulate gene expression levels in a pathogenic yeast. To test if these adaptations affect virulence, we created a panel of single-allele knockout strains whose hemizygous state mimics the genes' adaptive down-regulations, and measured their virulence in a mammalian host. Despite having no growth advantage in standard laboratory conditions, nearly all of the strains were more virulent than their wild-type progenitor, suggesting that these adaptations likely played a role in the evolution of pathogenicity. Furthermore, genetic variants at these loci were associated with clinical origin across 88 diverse yeast strains, suggesting the adaptations may have contributed to the virulence of a wide range of clinical isolates. We also detected pleiotropic effects of these adaptations on a wide range of morphological traits, which appear to have been mitigated by compensatory mutations at other loci. These results suggest that cis-regulatory adaptation can occur at the level of physically interacting modules and that one such polygenic adaptation led to increased virulence during the evolution of a pathogenic yeast.
    Genome Research 05/2012; 22(10):1930-9. · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethnic differences in human DNA methylation have been shown for a number of CpG sites, but the genome-wide patterns and extent of these differences are largely unknown. In addition, whether the genetic control of polymorphic DNA methylation is population-specific has not been investigated. Here we measure DNA methylation near the transcription start sites of over 14, 000 genes in 180 cell lines derived from one African and one European population. We find population-specific patterns of DNA methylation at over a third of all genes. Furthermore, although the methylation at over a thousand CpG sites is heritable, these heritabilities also differ between populations, suggesting extensive divergence in the genetic control of DNA methylation. In support of this, genetic mapping of DNA methylation reveals that most of the population specificity can be explained by divergence in allele frequencies between populations, and that there is little overlap in genetic associations between populations. These population-specific genetic associations are supported by the patterns of DNA methylation in several hundred brain samples, suggesting that they hold in vivo and across tissues. These results suggest that DNA methylation is highly divergent between populations, and that this divergence may be due in large part to a combination of differences in allele frequencies and complex epistasis or gene × environment interactions.
    Genome biology 02/2012; 13(2):R8. · 10.30 Impact Factor
  • Hunter B Fraser
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of gene expression in evolutionary adaptation has been a subject of debate for over 40 years. cis-regulation of transcription has been proposed to be the primary source of morphological novelty in evolution, though this is based on only a handful of examples. Recently the first genome-wide studies of gene expression adaptation have been published, giving us an initial global view of this process. Systematic studies such as these will allow a number of key questions currently facing the field of gene expression evolution to be addressed.
    BioEssays 06/2011; 33(6):469-77. · 5.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The idea that most morphological adaptations can be attributed to changes in the cis-regulation of gene expression levels has been gaining increasing acceptance, despite the fact that only a handful of such cases have so far been demonstrated. Moreover, because each of these cases involves only one gene, we lack any understanding of how natural selection may act on cis-regulation across entire pathways or networks. Here we apply a genome-wide test for selection on cis-regulation to two subspecies of the mouse Mus musculus. We find evidence for lineage-specific selection at over 100 genes involved in diverse processes such as growth, locomotion, and memory. These gene sets implicate candidate genes that are supported by both quantitative trait loci and a validated causality-testing framework, and they predict a number of phenotypic differences, which we confirm in all four cases tested. Our results suggest that gene expression adaptation is widespread and that these adaptations can be highly polygenic, involving cis-regulatory changes at numerous functionally related genes. These coordinated adaptations may contribute to divergence in a wide range of morphological, physiological, and behavioral phenotypes.
    PLoS Genetics 03/2011; 7(3):e1002023. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ∼250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types.
    PLoS ONE 01/2011; 6(7):e20090. · 3.53 Impact Factor
  • Hunter B Fraser, Alan M Moses, Eric E Schadt
    Proceedings of the National Academy of Sciences 06/2010; · 9.81 Impact Factor
  • Source
    Hunter B Fraser, Alan M Moses, Eric E Schadt
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in gene expression have been proposed to underlie many, or even most, adaptive differences between species. Despite the increasing acceptance of this view, only a handful of cases of adaptive gene expression evolution have been demonstrated. To address this discrepancy, we introduce a simple test for lineage-specific selection on gene expression. Applying the test to genome-wide gene expression data from the budding yeast Saccharomyces cerevisiae, we find that hundreds of gene expression levels have been subject to lineage-specific selection. Comparing these findings with independent population genetic evidence of selective sweeps suggests that this lineage-specific selection has resulted in recent sweeps at over a hundred genes, most of which led to increased transcript levels. Examination of the implicated genes revealed a specific biochemical pathway--ergosterol biosynthesis--where the expression of multiple genes has been subject to selection for reduced levels. In sum, these results suggest that adaptive evolution of gene expression is common in yeast, that regulatory adaptation can occur at the level of entire pathways, and that similar genome-wide scans may be possible in other species, including humans.
    Proceedings of the National Academy of Sciences 02/2010; 107(7):2977-82. · 9.81 Impact Factor
  • Source
    Hunter B Fraser, Eric E Schadt
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic robustness, or canalization, has been extensively investigated both experimentally and theoretically. However, it remains unknown to what extent robustness varies between individuals, and whether factors buffering environmental variation also buffer genetic variation. Here we introduce a quantitative genetic approach to these issues, and apply this approach to data from three species. In mice, we find suggestive evidence that for hundreds of gene expression traits, robustness is polymorphic and can be genetically mapped to discrete genomic loci. Moreover, we find that the polymorphisms buffering genetic variation are distinct from those buffering environmental variation. In fact, these two classes have quite distinct mechanistic bases: environmental buffers of gene expression are predominantly sex-specific and trans-acting, whereas genetic buffers are not sex-specific and often cis-acting. Data from studies of morphological and life-history traits in plants and yeast support the distinction between polymorphisms buffering genetic and environmental variation, and further suggest that loci buffering different types of environmental variation do overlap with one another. These preliminary results suggest that naturally occurring polymorphisms affecting phenotypic robustness could be abundant, and that these polymorphisms may generally buffer either genetic or environmental variation, but not both.
    PLoS ONE 01/2010; 5(1):e8635. · 3.53 Impact Factor

Publication Stats

3k Citations
613.03 Total Impact Points

Institutions

  • 2012–2013
    • University of Toronto
      Toronto, Ontario, Canada
    • University of British Columbia - Vancouver
      • Centre for Molecular Medicine and Therapeutics
      Vancouver, British Columbia, Canada
  • 2001–2013
    • Stanford University
      • • Department of Biology
      • • Stanford Genome Technology Center
      Palo Alto, California, United States
  • 2011
    • Wyeth
      New Johnsonville, Tennessee, United States
  • 2007–2009
    • Broad Institute of MIT and Harvard
      Cambridge, Massachusetts, United States
  • 2006–2007
    • University of Pennsylvania
      • Department of Biology
      Philadelphia, PA, United States
  • 2002–2006
    • University of California, Berkeley
      • Department of Molecular and Cell Biology
      Berkeley, CA, United States
  • 2005
    • Lawrence Berkeley National Laboratory
      • Genomics Division
      Berkeley, CA, United States
  • 2004
    • Harvard University
      Cambridge, Massachusetts, United States