Alan D Attie

University of Wisconsin–Madison, Madison, Wisconsin, United States

Are you Alan D Attie?

Claim your profile

Publications (150)1005.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucagon-like peptide-1 (GLP-1) is a natural agonist for GLP-1R, a G protein-coupled receptor (GPCR) on the surface of pancreatic β cells. GLP-1R agoinsts are attractive for treatment of type 2 diabetes, but GLP-1 itself is rapidly degraded by peptidases in vivo. We describe a design strategy for retaining GLP-1-like activity while engendering prolonged activity in vivo, based on strategic replacement of native α residues with conformationally constrained β-amino acid residues. This backbone-modification approach may be useful for developing stabilized analogues of other peptide hormones.
    Journal of the American Chemical Society 09/2014; · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptinob mutation (ob/ob), developed diabetes. β-Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a β-cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis.
    The Journal of clinical investigation. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The abundance and functional activity of proteins involved in the formation of the SNARE complex are tightly regulated for efficient exocytosis. Tomosyn proteins are negative regulators of exocytosis. Tomosyn causes an attenuation of insulin secretion by limiting the formation of the SNARE complex. We hypothesized that glucose-dependent stimulation of insulin secretion from β-cells must involve reversing the inhibitory action of tomosyn. Here we show that glucose increases tomosyn protein turnover. Within 1 h of exposure to 15 mM glucose, ~50% of tomosyn was degraded. The degradation of tomosyn in response to high glucose was blocked by inhibitors of the proteasomal pathway. Using 32P-labeling and mass spectrometry, we showed that tomosyn-2 is phosphorylated in response to high glucose, phorbol esters, and analogs of cAMP, all key insulin secretagouges. We identified eleven phosphorylation sites in tomosyn-2. Site-directed mutagenesis was used to generate phosphomimetic (S→D) and loss-of-function (S→A) mutants. The S→D mutant had enhanced protein turnover compared to the S→A mutant and wild type tomosyn-2. Additionally, the S→D tomosyn-2 mutant was ineffective at inhibiting insulin secretion. Using a proteomic screen for tomosyn-2 binding proteins we identified Hrd-1, an E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination is increased by Hrd-1 and knockdown of Hrd-1 by short-hairpin RNA resulted in increased abundance in tomosyn-2 protein levels. Taken together, our results reveal a mechanism by which enhanced phosphorylation of a negative regulator of secretion, tomosyn-2, in response to insulin secretagogues targets it to degradation by the Hrd-1 E3-ubiquitin ligase.
    The Journal of biological chemistry. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously demonstrated that micro-RNAs 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of micro-RNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including non-fuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT, Slc25a20) is a direct target of these miRNAs. CACT is responsible for transporting long-chain acyl-carnitines into the mitochondria for β-oxidation. SiRNA mediated knockdown of CACT in β-cells led to the accumulation of fatty acyl-carnitines, and enhanced IS. The addition of long-chain fatty acyl-carnitines promoted IS from INS-1 β-cells as well as primary mouse islets. The effect in INS-1 cells was augmented in response to suppression of CACT. A non-hydrolyzable ether analog of palmitoyl-carnitine stimulated IS, showing that β-oxidation of palmitoyl-carnitine is not required for its stimulation of IS. These studies establish a link between miRNA-dependent regulation of CACT and fatty acyl-carnitine mediated regulation of IS.
    Diabetes 06/2014; · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a mouse intercross with more than 500 animals and genome-wide gene expression data on six tissues, we identified a high proportion (18%) of sample mix-ups in the genotype data. Local expression quantitative trait loci (eQTL; genetic loci influencing gene expression) with extremely large effect were used to form a classifier to predict an individual's eQTL genotype based on expression data alone. By considering multiple eQTL and their related transcripts, we identified numerous individuals whose predicted eQTL genotypes (based on their expression data) did not match their observed genotypes, and then went on to identify other individuals whose genotypes did match the predicted eQTL genotypes. The concordance of predictions across six tissues indicated that the problem was due to mix-ups in the genotypes (though we further identified a small number of sample mix-ups in each of the six panels of gene expression microarrays). Consideration of the plate positions of the DNA samples indicated a number of off-by-one and off-by-two errors, likely the result of pipetting errors. Such sample mix-ups can be a problem in any genetic study, but eQTL data allow us to identify, and even correct, such problems. Our methods have been implemented in an R package, R/lineup.
    02/2014;
  • Melkam A. Kebede, Alan D. Attie
    [Show abstract] [Hide abstract]
    ABSTRACT: Many of our insights into obesity and diabetes come from studies in mice carrying natural or induced mutations. In parallel, genome-wide association studies (GWAS) in humans have identified numerous genes that are causally associated with obesity and diabetes, but discovering the underlying mechanisms required in-depth studies in mice. We discuss the advantages of studying natural variation in mice and summarize several examples where the combination of human and mouse genetics opened windows into fundamental physiological pathways. A noteworthy example is the melanocortin-4 receptor (MC4R) and its role in energy balance. The pathway was delineated by discovering the gene responsible for the Agouti mutation in mice. With more targeted phenotyping, we predict that additional pathways relevant to human pathophysiology will be discovered.
    Trends in endocrinology and metabolism: TEM. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high capacity ATP production in heart. The transcriptional coactivators, peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) α and β have been shown to regulate mitochondrial biogenesis in heart at the time of birth. The function of the PGC-1 coactivators in heart after birth is incompletely understood. To assess the role of the PGC-1 coactivators during postnatal cardiac development and in the adult heart in mice. Conditional gene targeting was used in mice to explore the role of the PGC-1 coactivators during postnatal cardiac development and in adult heart. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/β-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion [mitofusin 1 (Mfn1), optic atrophy 1 (Opa1)] and fission [dynamin-related protein 1 (Drp1), fission protein 1 (Fis1)] was altered in hearts of PGC-1α/β-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α (ERRα upon a conserved DNA element. Surprisingly, PGC-1α/β deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that the PGC-1 coactivators are required for high level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in adult heart. These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.
    Circulation Research 12/2013; · 11.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.
    Journal of the American Society for Mass Spectrometry 10/2013; · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin and Zn2+ enjoy a multivalent relationship. Zn2+ binds insulin in pancreatic β cells to form crystalline aggregates in dense core vesicles (DCVs), which are released in response to physiological signals such as increased blood glucose. This transition metal is an essential cofactor in insulin-degrading enzyme and several key Zn2+ finger transcription factors that are required for β cell development and insulin gene expression. Studies are increasingly revealing that fluctuations in Zn2+ concentration can mediate signaling events, including dynamic roles that extend beyond that of a static structural or catalytic cofactor. In this issue of the JCI, Tamaki et al. propose an additional function for Zn2+ in relation to insulin: regulation of insulin clearance from the bloodstream.
    The Journal of clinical investigation 09/2013; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine acetylation is rapidly becoming established as a key post-translational modification (PTM) for regulating mitochondrial metabolism. Nonetheless, distinguishing regulatory sites from among the thousands identified by mass spectrometry and elucidating how these modifications alter enzyme function remain primary challenges. Here, we performed multiplexed quantitative mass spectrometry to measure changes to the mouse liver mitochondrial acetyl-proteome in response to acute and chronic alterations in nutritional status, and integrated these data sets with our compendium of predicted Sirt3 targets. These analyses highlight a subset of mitochondrial proteins with dynamic acetylation sites, including acetyl-CoA acetyltransferase 1 (Acat1) - an enzyme central to multiple metabolic pathways. We performed in vitro biochemistry and molecular modeling to demonstrate that acetylation of Acat1 decreases its activity by disrupting the binding of Coenzyme A. Collectively, our data reveal an important new target of regulatory acetylation, and provide a foundation for investigating the role of select mitochondrial protein acetylation sites in mediating acute and chronic metabolic transitions.
    Journal of Biological Chemistry 07/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The leading cause of death in diabetic patients is cardiovascular disease. Apolipoprotein B (ApoB)-containing lipoprotein particles, which are secreted and cleared by the liver, are essential for the development of atherosclerosis. Insulin plays a key role in the regulation of ApoB. Insulin decreases ApoB secretion by promoting ApoB degradation in the hepatocyte. In parallel, insulin promotes clearance of circulating ApoB particles by the liver via the low-density lipoprotein receptor (LDLR), LDLR-related protein 1 (LRP1), and heparan sulfate proteoglycans (HSPGs). Consequently, the insulin-resistant state of type 2 diabetes (T2D) is associated with increased secretion and decreased clearance of ApoB. Here, we review the mechanisms by which insulin controls the secretion and uptake of ApoB in normal and diabetic livers.
    Trends in Endocrinology and Metabolism 05/2013; · 8.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endosomal sorting of the Alzheimer amyloid precursor protein (APP) plays a key role in the biogenesis of the amyloid-β (Aβ) peptide. Genetic lesions underlying Alzheimer's disease (AD) can act by interfering with this physiological process. Specifically, proteins involved in trafficking between endosomal compartments and the trans-Golgi network (TGN) [including the retromer complex (Vps35, Vps26) and its putative receptors (sortilin, SorL1, SorCS1)] have been implicated in the molecular pathology of late-onset AD. Previously, we demonstrated a role for SorCS1 in APP metabolism and Aβ production and, while we implicated a role for the retromer in this regulation, the underlying mechanism remained poorly understood. Here, we provide evidence for a motif within the SorCS1c cytoplasmic tail that, when manipulated, results in perturbed sorting of APP and/or its fragments to endosomal compartments, decreased retrograde TGN trafficking, and increased Aβ production in H4 neuroglioma cells. These perturbations apparently do not involve turnover of the cell surface APP pool, but rather they involve intracellular APP and/or its fragments, downstream of APP endocytosis.
    Journal of Neuroscience 04/2013; 33(16):7099-7107. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BTBR mice develop severe diabetes in response to genetically-induced obesity due to a failure of the β-cells to compensate for peripheral insulin resistance. In analyzing BTBR islet gene expression patterns, we observed that the gene for the EP3 isoform of the prostaglandin E2 (PGE2) receptor, Ptger3, was upregulated with diabetes. The EP3 receptor couples to G proteins of the Gi subfamily to decrease intracellular cyclic AMP (cAMP), blunting glucose-stimulated insulin secretion (GSIS). Also upregulated were several genes involved in the synthesis of PGE2. We hypothesized that increased signaling through EP3 might be coincident with the development of diabetes and contribute to β-cell dysfunction. We confirmed that the PGE2-to-EP3 signaling pathway was active in islets from confirmed diabetic BTBR mice and human cadaveric donors, with increased EP3 expression, PGE2 production, and function of EP3 agonists and antagonists to modulate cAMP production and GSIS. We also analyzed the impact of EP3 receptor activation on signaling through the glucagon-like peptide 1 (GLP-1) receptor. We demonstrated that EP3 agonists antagonize GLP-1 signaling, decreasing the maximal effect that GLP-1 can elicit on cAMP production and GSIS. Taken together, our results identify EP3 as a new therapeutic target for β-cell dysfunction in T2D.
    Diabetes 01/2013; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current efforts in systems genetics have focused on the development of statistical approaches that aim to disentangle causal relationships among molecular phenotypes in segregating populations. Reverse engineering of transcriptional networks plays a key role in the understanding of gene regulation. However, transcriptional regulation is only one possible mechanism, as methylation, phosphorylation, direct protein-protein interaction, transcription factor binding, etc., can also contribute to gene regulation. These additional modes of regulation can be interpreted as unobserved variables in the transcriptional gene network, and can potentially impact its reconstruction accuracy. We develop tests of causal direction for a pair of phenotypes that may be embedded in a more complicated but unobserved network by extending Vuong's selection tests for misspecified models. Our tests provide a significance level, which is unavailable for the widely used AIC and BIC criteria. We evaluate the performance of our tests against the AIC, BIC and a recently published causality inference test in simulation studies. We compare the precision of causal calls using biologically validated causal relationships extracted from a database of 247 knockout experiments in yeast. Our model selection tests are more precise, showing greatly reduced false positive rates compared to the alternative approaches. In practice, this is a useful feature since follow up studies tend to be time consuming and expensive and, hence, it is important for the experimentalist to have causal predictions with low false positive rates.
    Genetics 01/2013; · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6) and diabetes-susceptible (BTBR) mouse strains made genetically obese by the Leptin(ob/ob) mutation (Lep(ob)). High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle) were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.
    PLoS Genetics 12/2012; 8(12):e1003107. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are dynamic organelles that play a central role in a diverse array of metabolic processes. Elucidating mitochondrial adaptations to changing metabolic demands and the pathogenic alterations that underlie metabolic disorders represent principal challenges in cell biology. Here, we performed multiplexed quantitative mass spectrometry-based proteomics to chart the remodeling of the mouse liver mitochondrial proteome and phosphoproteome during both acute and chronic physiological transformations in more than 50 mice. Our analyses reveal that reversible phosphorylation is widespread in mitochondria, and is a key mechanism for regulating ketogenesis during the onset of obesity and type 2 diabetes. Specifically, we have demonstrated that phosphorylation of a conserved serine on Hmgcs2 (S456) significantly enhances its catalytic activity in response to increased ketogenic demand. Collectively, our work describes the plasticity of this organelle at high resolution and provides a framework for investigating the roles of proteome restructuring and reversible phosphorylation in mitochondrial adaptation.
    Cell metabolism 11/2012; 16(5):672-83. · 17.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes involves a defective response to insulin (insulin resistance) coupled with the gradual loss of compensatory increases in insulin production. Insulin resistance is primarily due to overnutrition. In contrast, genetic factors are important in limiting the capacity for increased insulin production. The prevailing view of insulin resistance is that defects in the insulin signaling pathway are caused by excess nutrients, primarily fatty acids. We describe the cross-talk between metabolic pathways and the ways in which these pathways might fail to adapt to overnutrition. The consequences of this inflexibility are an excess of nutrients that directly or indirectly modulate insulin signaling. In pancreatic β-cells, nutrient sensing evokes insulin secretion. Mutations that limit this sensing lead to insufficient insulin secretion, whereas an excess of nutrients can lead to basal hyperinsulinemia, eventually blunting insulin signaling in target tissues. This article focuses on the metabolic mechanis...
    08/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.
    Genetics 06/2012; 191(4):1355-65. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonalchoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction and is associated with metabolic diseases, including obesity, insulin resistance, and type 2 diabetes. We mapped a quantitative trait locus (QTL) for NAFLD to chromosome 17 in a cross between C57BL/6 (B6) and BTBR mouse strains made genetically obese with the Lep(ob/ob) mutation. We identified Tsc2 as a gene underlying the chromosome 17 NAFLD QTL. Tsc2 functions as an inhibitor of mammalian target of rapamycin, which is involved in many physiological processes, including cell growth, proliferation, and metabolism. We found that Tsc2(+/-) mice have increased lipogenic gene expression in the liver in an insulin-dependent manner. The coding single nucleotide polymorphism between the B6 and BTBR strains leads to a change in the ability to inhibit the expression of lipogenic genes and de novo lipogenesis in AML12 cells and to promote the proliferation of Ins1 cells. This difference is due to a different affinity of binding to Tsc1, which affects the stability of Tsc2.
    The Journal of Lipid Research 05/2012; 53(8):1493-501. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmission ratio distortion (TRD) is the departure from the expected genotypic frequencies under Mendelian inheritance. This departure can be due to multiple physiological mechanisms during gametogenesis, fertilization, fetal and embryonic development, and early neonatal life. Although a few TRD loci have been reported in mouse, inheritance patterns have never been evaluated for TRD. In this article, we developed a Bayesian binomial model accounting for additive and dominant deviation TRD mechanisms. Moreover, this model was used to perform genome-wide scans for TRD quantitative trait loci (QTL) on six F2 mouse crosses involving between 296 and 541 mice and between 72 and 1854 genetic markers. Statistical significance of each model was checked at each genetic marker with Bayes factors. Genome scans revealed overdominance TRD QTL located in mouse chromosomes 1, 2, 12, 13, and 14 and additive TRD QTL in mouse chromosomes 2, 3, and 15, although these results did not replicate across mouse crosses. This research contributes new statistical tools for the analysis of specific genetic patterns involved in TRD in F2 populations, our results suggesting a relevant incidence of TRD phenomena in mouse with important implications for both statistical analyses and biological research.
    Genetics 02/2012; 191(1):247-59. · 4.39 Impact Factor

Publication Stats

6k Citations
1,005.06 Total Impact Points

Institutions

  • 1988–2014
    • University of Wisconsin–Madison
      • • Department of Biochemistry
      • • Department of Biostatistics and Medical Informatics
      • • Department of Comparative Biosciences
      Madison, Wisconsin, United States
  • 2013
    • Sage Bionetworks
      Seattle, Washington, United States
  • 2010
    • Icahn School of Medicine at Mount Sinai
      Manhattan, New York, United States
  • 2008–2010
    • Duke University Medical Center
      Durham, North Carolina, United States
    • San Diego State University
      • Department of Biology
      San Diego, CA, United States
    • Tufts University
      • Department of Medicine
      Medford, MA, United States
  • 2009
    • The Ohio State University
      Columbus, Ohio, United States
  • 1982–2007
    • University of California, San Diego
      • Department of Medicine
      San Diego, California, United States