Wei Kong

Peking University Health Science Center, Peping, Beijing, China

Are you Wei Kong?

Claim your profile

Publications (169)578.25 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: BST2 (CD317, tetherin, HM1.24) is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2) is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.
    PLoS ONE 09/2015; 10(9):e0138190. DOI:10.1371/journal.pone.0138190 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Active vaccination against amyloid β (Aβ42) is considered a potential therapeutic approach for Alzheimer's disease (AD). However, immunization with synthetic human Aβ1-42 has resulted in meningoencephalitis in 6% of patients and generated only low-titer anti-Aβ42 antibodies. In order to develop a safe and effective vaccine against Alzheimer's disease, the Aβ1-6 peptide was used as the novel immunogen and Norovirus P particles as the vaccine platform in this study. By inserting and presenting Aβ1-6 on the outermost surface of the P particle, we showed that the chimeric P particle-based AD protein vaccine could elicit a strong immune response, inducing highly specific antibody titers against Aβ42 without causing T-cell activation. Furthermore, antibodies induced by the AD protein vaccines were demonstrated to be effective at the cellular level. In addition, we also compared the immunogenicity of the chimeric P particles with different insertional loci in the loop structure domain and demonstrated that insertion of the antigen into all three loops of the P particle at the same time could significantly improve immune responses to the vaccine. In conclusion, the Norovirus P particle is an excellent vaccine platform for stimulating Aβ42 antibody production, and chimeric P particles may be developed as an effective therapy for AD.
    Immunology letters 09/2015; DOI:10.1016/j.imlet.2015.09.002 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is capable of selectively inducing apoptosis of cancer cells, is a potential targeted drug for cancer therapy. The TRAIL protein induces apoptosis only in trimeric form. However, the recombinant soluble TRAIL (sTRAIL) trimer has low stability and a short half-life, which is a major obstacle for its advancement into clinical trials. Moreover, a percentage of engineered sTRAIL proteins are produced as dimers which may be toxic to normal human hepatocytes. In this study, we inserted three copies of the same subunit fragment of sTRAIL with a His tag into a polycistronic expression vector (pST39) to explore whether it would increase the proportion of trimers. We also constructed a heterozygous vector containing three subunit fragments of sTRAIL each with a different tag (His, HA, and Cmyc). Hybrid sTRAIL proteins (P-dTags) mainly as heterologous trimers were obtained by elution with a low concentration of imidazole based on different binding affinities of His with a nickel column. Functional analysis demonstrated that heterotrimeric forms of sTRAIL showed more stable activity compared to the P-3H at 4 °C but not at 37 °C without alteration in the native killing capacity. In addition, the heterologous trimers showed decreased toxicity to hepatocytes. These results suggest that the polycistronic expression system may be useful for expression of recombinant sTRAIL and improving its potential in cancer therapeutic applications. Copyright © 2015. Published by Elsevier Inc.
    Protein Expression and Purification 08/2015; DOI:10.1016/j.pep.2015.08.004 · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study aims to develop a novel multistep chromatographic purification process for human enterovirus71 virus-like particles (VLPs) produced from insect cells (Sf9) infected with recombinant baculovirus. Sf9 cells were maintained in the Wave Bioreactor system20/50, and harvested when the viability decreased to 75% after infected with Bac-P1-3CD at the multiplicity of infection (MOI) of 1. After sonication and centrifugation, EV71 VLPs were purified with Capto(™) Core 700, Capto(™) adhere and Capto(TM) butyl. The purity was then determined by SDS-PAGE, Western blotting and high-performance liquid chromatography (HPLC), while the diameter of purified EV71 VLPs was analyzed by Dynamic Light Scattering (DLS) and Transmission electron microscopy (TEM). Immunization of BALB/c mice and serum collection were performed after contamination analysis, and neutralization antibodies were then analyzed by pseudovirus-based microneutralization assay. Results showed that these purified EV71 VLPs can be successfully purified with ~31.52% yield and > 95% purity. They could elicit stronger neutralization antibodies in mice compared with those produced from formalin-inactivated EV71 virus. Our results demonstrated that EV71 VLPs can be purified with the multistep chromatographic protocol. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Journal of Applied Microbiology 08/2015; DOI:10.1111/jam.12922 · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency. Copyright © 2015. Published by Elsevier Ltd.
    Molecular Immunology 08/2015; DOI:10.1016/j.molimm.2015.06.027 · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here is reported a novel pneumolysin(Ply) mutant(PlyM2) that addresses a long-standing problem for vaccine development in this field: detoxification of Ply in the premise of retaining antigenic integrity. Structure and function of wild-type Ply(PlyWT) and PlyM2 mutants were detected and compared. Their structures were not significantly different according to the analysis by thermal-dependent fluorescence spectroscopy and circular dichroism spectroscopy. PlyM2 was confirmed to have lost hemolytic activity and yet could induce neutralizing antibodies to prevent in vitro hemolysis by PlyWT and S. Pneumoniae. These results give support to PlyM2 to be a new protein antigen for inclusion in the development of an effective pneumococcal multiprotein vaccine.
    Chemical Research in Chinese Universities 08/2015; 31(4). DOI:10.1007/s40242-015-5105-3 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a novel glycol chitosan (GCS)-bestatin conjugate was synthesized and evaluated to demonstrate its efficacy in protecting thymopoietin oligopeptides from aminopeptidase-mediated degradation. Moreover, the mechanism and relative susceptibility of three thymopoietin oligopeptides, thymocartin (TP4), thymopentin (TP5), and thymotrinan (TP3), to enzymatic degradation were investigated and compared at the molecular level. Initial investigations indicated that formation of the GCS-bestatin conjugate, with a substitution degree of 7.0% (moles of bestatin per mole of glycol glucosamine unit), could significantly protect all three peptides from aminopeptidase-mediated degradation in a concentration-dependent manner. The space hindrance and loss of one pair of hydrogen bonds, resulting from the covalent conjugation of chitosan with bestatin, did not affect the specific interaction between bestatin and aminopeptidase. Moreover, TP4 displayed a higher degradation clearance compared with those of TP5 and TP3 under the same experimental conditions. The varying levels of susceptibility of these three peptides to aminopeptidase (TP4 > TP5 > TP3) were closely related to differences in their binding energies to enzyme, which mainly involved Van der Waals forces and electrostatic interactions, as supported by the results of molecular dynamics simulations. These results suggest that GCS-bestatin conjugate might be useful in the delivery of thymopoietin oligopeptides by mucosal routes, and that TP3 and TP5 are better alternatives to TP4 for delivery because of their robust resistance against enzymatic degradation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
    Journal of Pharmaceutical Sciences 07/2015; DOI:10.1002/jps.24567 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The absence of a productive cell culture system hampered detailed analysis of the structure and protein composition of the hepatitis E virion. In this study, hepatitis E virus from a robust HEV cell culture system and from the feces of infected monkeys at the peak of virus excretion was purified by ultra-centrifugation. The common feature of the two samples after ultracentrifugation was that the ORF2 protein mainly remained in the top fractions. The ORF2 protein from cell culture system was glycosylated, with an apparent molecular weight of 88 kDa, and was not infectious in PLC/PRF/5 cells. The ORF2 protein in this fraction can bind to and protect HEV RNA from digestion by RNase A. The RNA-ORF2 product has a similar sedimentation coefficient to the virus from feces. The viral RNA in the cell culture supernatant was mainly in the fraction of 1.15g/cm3 but that from the feces was mainly in the fraction of 1.21 g/cm3. Both were infectious in PLC/PRF/5 cells. And the fraction in the middle of the gradient (1.06g/cm3) from the cell culture supernatant,but not that from the feces, also has ORF2 protein and HEV RNA but was not infectious in PLC/PRF/5.The infectious RNA-rich fraction from the cell culture contained ORF3 protein and lipid but the corresponding fraction from feces had no lipid and little ORF3 protein. The lipid on the surface of the virus has no effect on its binding to cells but the ORF3 protein interferes with binding. The result suggests that most of the secreted ORF2 protein is not associated with HEV RNA and that hepatitis E virus produced in cell culture differs in structure from the virus found in feces in that it has a lipid envelope.
    PLoS ONE 07/2015; 10(7):e0132503. DOI:10.1371/journal.pone.0132503 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant proteins have been drawing increasing attention owing to their safety, abundance and relatively low cost in comparison with animal proteins. The development of plant protein-based delivery vehicles may lead to the provision of novel pharmaceutical products to patients. Zein is a class of alcohol-soluble prolamine proteins present in maize endosperm that was approved as a generally recognised as safe excipient in 1985 by the US FDA for use in pharmaceutical film coatings. Over the past few decades, numerous studies have been carried out to illustrate zein’s potential for novel applications in the biomedical field. This paper reviews the present status of zein-based nanofibres, with emphasis on their fabrication and biomedical applications, particularly for drug delivery. Their benefits and limitations are also discussed to provide further insight into zein’s potential as a promising biomaterial.
    Current Pharmaceutical Design 07/2015; 21(22). DOI:10.2174/1381612821666150531170448 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant efforts directed toward research on HIV-1 vaccines, a truly effective immunogen has not been achieved. However, the broadly neutralizing antibodies (BnAbs) 2F5 and 4E10, targeting the highly conserved membrane proximal external region (MPER) of HIV-1, are two promising tools for vaccine development. Here we engrafted the MPER into the linker domain between the trimeric core structure and the transmembrane domain of influenza A virus HA2 to investigate the potential of such chimeric viruses to elicit HIV-1 neutralizing antibodies. In the context of proliferating attenuated influenza A viruses, these HIV-1 neutralizing antibody epitopes could be continuously expressed and mimicked their native conformation to induce humoral immune responses. While MPER-specific antibodies could be detected in serum of guinea pigs vaccinated with the chimeric viruses, they exhibited only weakly neutralizing activities. These antisera from vaccinated animals neutralized viruses of clades B and BC (tier 1), but not of clades AE (tier 1) and C (tier 2). These results suggest that influenza A virus can be used as a vehicle for displaying MPER and inducing BnAbs, but it provides limited protection against HIV-1 infection. In the future development of HIV-1 vaccines by rational design, a more effective live virus vector or multiple antigens should be chosen to facilitate the process of neutralizing antibody maturation. Copyright © 2015. Published by Elsevier Ltd.
    Vaccine 06/2015; 33(32). DOI:10.1016/j.vaccine.2015.06.072 · 3.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus pneumoniae is an important pathogen accounting for a large number of deaths worldwide. Due to drawbacks of the current polysaccharide-based vaccine, the most promising way to generate an improved vaccine may be to utilize protection-eliciting pneumococcal proteins. Pneumococcal surface adhesin A (PsaA) and pneumococcal surface protein A (PspA) are two vaccine candidates which have been evaluated against S. pneumoniae infection in animal models or human clinical trials with encouraging results. In this study, the efficacy of the fusion protein PsaA-PspA, which includes PsaA part and PspA part, in inducing immunoprotective effects against fatal pneumococcal challenge was evaluated in an animal model. PspA part of PsaA-PspA fusion protein contains both family1 N-terminal region and family 2 N-terminal clade-defining region of PspA. Immunization with the PsaA-PspA fusion protein induced high levels of antibodies against both PsaA and PspA, which could bind to intact S. pneumoniae strains bearing different PspAs. Ex vivo stimulation of splenocytes from mice immunized with PsaA-PspA induced IL-17A secretion. Mice immunized with PsaA-PspA showed reduced S. pneumoniae levels in the blood and lungs compared with the PBS group after intranasal infection. Finally, mice immunized with PsaA-PspA fusion proteins were protected against fatal challenge with pneumococcal strains expressing different PspAs regardless of the challenge route. These results support the PsaA-PspA fusion protein as a promising vaccine strategy, as demonstrated by its ability to enhance the immune response and stimulate production of high titer antibodies against S. pneumoniae strains bearing heterologous PspAs, as well as confer protection against fatal challenge with PspA family 1 and family 2 strains.
    Immunological Investigations 06/2015; 44(5):482-96. DOI:10.3109/08820139.2015.1037956 · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular calcification (VC) is a major risk factor for cardiovascular mortality in chronic renal failure (CRF) patients, but the pathogenesis remains partially unknown and effective therapeutic targets should be urgently explored. Here we pursued the therapeutic role of rapamycin in CRF-related VC. Mammalian target of rapamycin (mTOR) signal was activated in the aortic wall of CRF rats. As expected, oral rapamycin administration significantly reduced VC by inhibiting mTOR in rats with CRF. Further in vitro results showed that activation of mTOR by both pharmacological agent and genetic method promoted, while inhibition of mTOR reduced, inorganic phosphate-induced vascular smooth muscle cell (VSMC) calcification and chondrogenic/osteogenic gene expression, which were independent of autophagy and apoptosis. Interestingly, the expression of Klotho, an antiaging gene that suppresses VC, was reduced in calcified vasculature, whereas rapamycin reversed membrane and secreted Klotho decline through mTOR inhibition. When mTOR signaling was enhanced by either mTOR overexpression or deletion of tuberous sclerosis 1, Klotho mRNA was further decreased in phosphate-treated VSMCs, suggesting a vital association between mTOR signaling and Klotho expression. More importantly, rapamycin failed to reduce VC in the absence of Klotho by using either siRNA knockdown of Klotho or Klotho knockout mice. Thus, Klotho has a critical role in mediating the observed decrease in calcification by rapamycin in vitro and in vivo.Kidney International advance online publication, 10 June 2015; doi:10.1038/ki.2015.160.
    Kidney International 06/2015; DOI:10.1038/ki.2015.160 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thrombin is an effector enzyme for hemostasis and thrombosis; however, endogenous regulators of thrombin remain elusive. Cartilage oligomeric matrix protein (COMP), a matricellular protein also known as thrombospondin-5, is essential for maintaining vascular homeostasis. Here, we asked whether COMP is involved in the process of blood coagulation. COMP deficiency shortened tail-bleeding and clotting time and accelerated FeCl3-induced thrombosis in mice. The absence of COMP had no effect on the platelet count. In contrast, COMP specifically inhibited thrombin-induced platelet aggregation, activation, retraction and the thrombin-mediated cleavage of fibrinogen. Furthermore, surface plasmon resonance (SPR) analysis revealed direct thrombin-COMP binding (KD=1.38±0.24 µM). In particular, blockage of thrombin exosites with compounds specific for exosite I (hirudin and HD1 aptamer) or exosite II (heparin and HD22 aptamer) impaired the COMP-thrombin interaction, indicating a two-site binding mechanism. Additionally, EGF-like repeats (amino acids 84-261) were identified as a COMP binding site for thrombin. Moreover, COMP was expressed in and secreted by platelets. Using bone marrow transplantation and platelet transfusion to create chimeric mice, platelet-derived but not vessel wall-derived COMP was demonstrated to inhibit coagulation. Taken together, COMP is an endogenous thrombin inhibitor and negative regulator of hemostasis and thrombosis. Copyright © 2015 American Society of Hematology.
    Blood 06/2015; 126(7). DOI:10.1182/blood-2015-01-621292 · 10.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enterovirus 71(EV71) has caused severe epidemics of hand, foot and mouth disease (HFMD) in the Asia Pacific in recent years, particularly in infants and pre-school children. It has become a serious public health threat, as currently there are no approved vaccines or antiviral drugs for EV71 infection. Many EV71 vaccines have been under development worldwide, however the main focus is inactivated EV71 vaccines. For example, the inactivated EV71 vaccine has recently finished phase III clinical trial in Mainland China. There have been very few studies on EV71 virus like particles (VLPs). In this study, the immunogenicity and protective potency of the EV71 VLPs produced in insect cells were evaluated in mice with different dosages. Our results showed that EV71 VLPs could elicit high titers of neutralizing antibodies (NTAbs) in a dose-dependent manner and NTAbs were sustained after the second injection with an average GMT (geometric mean titer) level from 19 to 2960 in immunized mice. Survival rates were 100%, 100%, 85%, and 40% after challenge with 15 LD50 (median lethal dose) of EV71 in these newborn mice, respectively. ED50 (50% effective dose) of VLPs was 0.20 μg/dose in newborn mice, while NTAb titer under this dosage was about 50. Passive protection was determined with two methods and demonstrated that the survival rates were positively correlated with NTAb titers, which at 24 and 54 induced 50% survival rates in experimental animals. The ED50 of VLP vaccines and the passive NTAb titers were also analyzed. The maternal NTAb titer was similar as the passive NTAb titer in the mouse model challenged with our lethal mouse EV71 strain. Hence, our work has provided preliminary data on the protection potency of VLPs as a vaccine candidate and would facilitate future VLP vaccine development.
    Human Vaccines & Immunotherapeutics 06/2015; DOI:10.1080/21645515.2015.1053675 · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant proteins have been drawing increasing attention owing to their safety, abundance and relatively low cost in comparison with animal proteins. The development of plant protein-based delivery vehicles may lead to the provision of novel pharmaceutical products to patients. Zein is a class of alcohol-soluble prolamine proteins present in maize endosperm that was approved as a generally recognised as safe excipient in 1985 by the US FDA for use in pharmaceutical film coatings. Over the past few decades, numerous studies have been carried out to illustrate zein's potential for novel applications in the biomedical field. This paper reviews the present status of zein-based nanofibres, with emphasis on their fabrication and biomedical applications, particularly for drug delivery. Their benefits and limitations are also discussed to provide further insight into zein's potential as a promising biomaterial.
    Current pharmaceutical design 05/2015; 21(22). · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular smooth muscle cell (VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 siRNA, but not scrambled siRNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [(3)H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate (by 61%) upon ADAMTS-7 overexpression and retarded proliferation (by 23%) upon ADAMTS-7 siRNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.
    Science China. Life sciences 04/2015; 58(7). DOI:10.1007/s11427-015-4843-2 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens.
    PLoS ONE 04/2015; 10(4):e0125701. DOI:10.1371/journal.pone.0125701 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rbx1 and Rbx2 are essential components of Cullin-RING E3 Ligases. Vif is generally believed to preferentially recruit the Cul5-Rbx2 module to induce proteasomal degradation of antiretroviral enzyme APOBEC3G, although some investigators have found that the Cul5-Rbx1 module is recruited. Here, to investigate the function of the two Rbx proteins in the Vif-Cul5 complex, we analyzed the performance of Cul5-Rbx1/Cul5-Rbx2 module in the activity of Vif E3 ligase and evaluated the interactions between Rbx1/Rbx2 and Cul5. We found that either Rbx1 or Rbx2 could promote ubiquitination of APOBE3G (A3G) in vitro. We also found that both Rbx1 and Rbx2 could bind Cul5 in cells and Rbx2 could dose-dependently inhibit the interaction of Rbx1 with Cul5. Furthermore, only the decrease of endogenous Rbx2 but not Rbx1 could impair the Vif-induced A3G degradation in cells. These findings indicate that Rbx1 and Rbx2 can both activate Cul5-Vif E3 ligase in vitro, but they may undergo a more delicate selection mechanism in vivo. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 04/2015; 461(4). DOI:10.1016/j.bbrc.2015.04.077 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence shows that grains may play a role in disease prevention beyond the simple provision of energy and nutrients. It has been reported that some components contained in grains exert their functional effects on viral and bacterial infections and protect against various cancers. However, until now, hardly any intervention studies have investigated the effects of grains or grain based extracts on the inhibition of HIV-1 infection. In this study, the antiviral function of a zymolytic grain based extract (ZGE) was detected in vitro and in rats, and the antiviral mechanism was investigated. Results showed that ZGE had an inhibition effect on HIV-1 infection in vitro with low cytotoxic effects. The study of the mechanism demonstrated that this functional food possibly acted on the viral surface structure protein gp120 which is responsible for cell binding, as well as on the postattachment stage of the virus. The sera of model rats administrated with this food by gavage presented anti-infection abilities against HIV-1 in vitro during a serum concentration associated period of time. These findings provide valuable insights into the application of ZGE on the control of viral load, which may contribute to future anti-HIV treatment with less adverse effects.
    Evidence-based Complementary and Alternative Medicine 04/2015; 2015:642327. DOI:10.1155/2015/642327 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease with especially severe neurologic complications, which mainly account for fatalities from this disease. To date, the pathogenesis of EV71 in the central neurons system has remained unclear. Cytokine-mediated immunopathogenesis and nervous tissue damage by virus proliferation are two widely speculated causes of the neurological disease. To further study the pathogenesis, we identified a common epitope (co-epitope) between EV71 VP1 and human mediator complex subunit 25 (MED25) highly expressed in brain stem. A monoclonal antibody (2H2) against the co-epitope was prepared, and its interaction with MED25 was examined by ELISA, immunofluorescence assay and Western blot in vitro and by live small animal imaging in vivo. Additionally, 2H2 could bind to both VP1 and MED25 with the affinity constant (Kd) of 10−7 M as determined by the ForteBio Octet System. Intravenously injected 2H2 was distributed in brain stem of mice after seven days of EV71 infection. Interestingly, 2H2-like antibodies were detected in the serum of EV71-infected patients. These findings suggest that EV71 infection induces the production of antibodies that can bind to autoantigens expressed in nervous tissue and maybe further trigger autoimmune reactions resulting in neurological disease.
    Viruses 04/2015; 7(4):1558-1577. DOI:10.3390/v7041558 · 3.35 Impact Factor

Publication Stats

2k Citations
578.25 Total Impact Points


  • 2011–2015
    • Peking University Health Science Center
      • Department of Biochemistry and Molecular Biology
      Peping, Beijing, China
    • Auburn University
      • Department of Physics
      Auburn, AL, United States
    • Nankai University
      T’ien-ching-shih, Tianjin Shi, China
  • 2003–2015
    • Jilin University
      • College of Life Sciences
      Yung-chi, Jilin Sheng, China
  • 2008–2014
    • Peking University
      • • School of Basic Medical Science
      • • School of Pharmaceutical Sciences
      Peping, Beijing, China
    • 302 Military Hospital of China
      Peping, Beijing, China
  • 2012
    • University of California, Davis
      • Cancer Center
      Davis, California, United States
  • 2006
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
  • 2001–2003
    • Johns Hopkins University
      • Department of Molecular Microbiology and Immunology
      Baltimore, Maryland, United States
  • 2002
    • Johns Hopkins Bloomberg School of Public Health
      • Department of Epidemiology
      Baltimore, Maryland, United States