Johann Stanek

Medical University of Vienna, Vienna, Vienna, Austria

Are you Johann Stanek?

Claim your profile

Publications (31)87.75 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adenosine triphosphate-binding cassette transporters P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are 2 major gatekeepers at the blood-brain barrier (BBB) that restrict brain distribution of several clinically used drugs. In this study, we investigated the suitability of the radiolabeled Pgp/BCRP inhibitors (11)C-tariquidar and (11)C-elacridar to assess Pgp density in the human brain with PET. Healthy subjects underwent a first PET scan of 120-min duration with either (11)C-tariquidar (n = 6) or (11)C-elacridar (n = 5) followed by a second PET scan of 60-min duration with (R)-(11)C-verapamil. During scan 1 (at 60 min after radiotracer injection), unlabeled tariquidar (3 mg/kg) was intravenously administered. Data were analyzed using 1-tissue 2-rate-constant (1T2K) and 2-tissue 4-rate-constant (2T4K) compartment models and either metabolite-corrected or uncorrected arterial input functions. After injection of (11)C-tariquidar or (11)C-elacridar, the brain PET signal corrected for radioactivity in the vasculature was low (∼0.1 standardized uptake value), with slow washout. In response to tariquidar injection, a moderate but statistically significant rise in brain PET signal was observed for (11)C-tariquidar (+27% ± 15%, P = 0.014, paired t test) and (11)C-elacridar (+21% ± 15%, P = 0.014) without changes in plasma activity concentrations. Low levels of radiolabeled metabolites (<25%) were detected in plasma up to 60 min after injection of (11)C-tariquidar or (11)C-elacridar. The 2T4K model provided better data fits than the 1T2K model. Model outcome parameters were similar when metabolite-corrected or uncorrected input functions were used. There was no significant correlation between distribution volumes of (11)C-tariquidar or (11)C-elacridar and distribution volumes of (R)-(11)C-verapamil in different brain regions. The in vivo behavior of (11)C-tariquidar and (11)C-elacridar was consistent with that of dual Pgp/BCRP substrates. Both tracers were unable to visualize cerebral Pgp density, most likely because of insufficiently high binding affinities in relation to the low density of Pgp in human brain (∼1.3 nM). Despite their inability to visualize Pgp density, (11)C-tariquidar and (11)C-elacridar may find use as a new class of radiotracers to study the interplay of Pgp and BCRP at the human BBB in limiting brain uptake of dual substrates.
    Journal of Nuclear Medicine 07/2013; · 5.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: The adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) protects the brain from accumulation of lipophilic compounds by active efflux transport across the blood-brain barrier. Changes in Pgp function/expression may occur in neurological disorders, such as epilepsy, Alzheimer's or Parkinson's disease. In this work we investigated the suitability of the radiolabeled Pgp inhibitors [(11)C]elacridar and [(11)C]tariquidar to visualize Pgp density in rat brain with PET. METHODS: Rats underwent a first PET scan with [(11)C]elacridar (n=5) or [(11)C]tariquidar (n=6) followed by a second scan with the Pgp substrate (R)-[(11)C]verapamil after administration of unlabeled tariquidar at a dose which half-maximally inhibits cerebral Pgp (3mg/kg). Compartmental modeling using an arterial input function and Logan graphical analysis were used to estimate rate constants and volumes of distribution (VT) of radiotracers in different brain regions. RESULTS: Brain PET signals of [(11)C]elacridar and [(11)C]tariquidar were very low (~0.5 standardized uptake value, SUV). There was a significant negative correlation between VT and K1 (i.e. influx rate constant from plasma into brain) values of [(11)C]elacridar or [(11)C]tariquidar and VT and K1 values of (R)-[(11)C]verapamil in different brain regions which was consistent with binding of [(11)C]inhibitors to Pgp and efflux of (R)-[(11)C]verapamil by Pgp. CONCLUSION: The small Pgp binding signals obtained with [(11)C]elacridar and [(11)C]tariquidar limit the applicability of these tracers to measure cerebral Pgp density. PET tracers with higher (i.e. subnanomolar) binding affinities will be needed to visualize the low density of Pgp in brain.
    Nuclear Medicine and Biology 06/2013; · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elacridar and tariquidar are generally thought to be non-transported inhibitors of P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), but recent data indicate that they may also be substrates of these multidrug transporters (MDTs). The present study was designed to investigate potential transport of elacridar and tariquidar by MDTs at the blood-brain barrier at tracer doses as used in positron emission tomography (PET) studies. We performed PET scans with carbon-11-labelled elacridar and tariquidar before and after MDT inhibition in wild-type and transporter knockout mice as well as in in-vitro transport assays in MDT-overexpressing cells. Brain entrance of [(11)C]elacridar and [(11)C]tariquidar administered in nanomolar tracer doses was found to be limited by Pgp- and Bcrp1-mediated efflux at the mouse blood-brain barrier. At higher, MDT-inhibitory doses, i.e. 15 mg/kg for tariquidar and 5 mg/kg for elacridar, brain activity uptake of [(11)C]elacridar at 25 min after tracer injection was 5.8±0.3, 2.1±0.2 and 7.5±1.0-fold higher in wild-type, Mdr1a/b((-/-,)) and Bcrp1((-/-)) mice, respectively, but remained unchanged in Mdr1a/b((-/-)) Bcrp1((-/-)) mice. Activity uptake of [(11)C]tariquidar was 2.8±0.2 and 6.8±0.4-fold higher in wild-type and Bcrp1((-/-)) mice, but remained unchanged in Mdr1a/b((-/-)) and Mdr1a/b((-/-)) Bcrp1((-/-)) mice. Consistent with the in-vivo findings, in-vitro uptake assays in Pgp and Bcrp1 overexpressing cell lines confirmed low intracellular accumulation of elacridar and tariquidar at nanomolar concentrations and increased uptake at micromolar concentrations. As this study shows that microdoses can behave pharmacokinetically different from MDT-inhibitory doses if a compound interacts with MDTs, conclusions from microdose studies should be drawn carefully.
    Drug metabolism and disposition: the biological fate of chemicals 01/2013; · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HM30181, a potent and selective inhibitor of the adenosine triphosphate-binding cassette transporter P-glycoprotein (Pgp), was shown to enhance oral bioavailability and improve antitumour efficacy of paclitaxel in mouse tumour models. In search for a positron emission tomography (PET) radiotracer to visualise Pgp expression levels at the blood-brain barrier (BBB), we examined the ability of HM30181 to inhibit Pgp at the murine BBB. HM30181 was shown to be approximately equipotent with the reference Pgp inhibitor tariquidar in inhibiting rhodamine 123 efflux from CCRF-CEM T cells (IC(50), tariquidar: 8.2±2.0nM, HM30181: 13.1±2.3nM). PET scans with the Pgp substrate (R)-[(11)C]verapamil in FVB wild-type mice pretreated i.v. with HM30181 (10 or 21mg/kg) failed to show significant increases in (R)-[(11)C]verapamil brain uptake compared with vehicle treated animals. PET scans with [(11)C]HM30181 showed low and not significantly different brain uptake of [(11)C]HM30181 in wild-type, Mdr1a/b((-/-)) and Bcrp1((-/-)) mice and significantly, i.e. 4.7-fold (P<0.01), higher brain uptake, relative to wild-type animals, in Mdr1a/b((-/-))Bcrp1((-/-)) mice. This was consistent with HM30181 being at microdoses a dual substrate of Pgp and breast cancer resistance protein (Bcrp). In vitro autoradiography on low (EMT6) and high (EMT6Ar1.0) Pgp expressing murine breast tumour sections showed 1.9 times higher binding of [(11)C]HM30181 in EMT6Ar1.0 tumours (P<0.001) which was displaceable with unlabelled tariquidar, elacridar or HM30181 (1μM). Our data suggest that HM30181 is not able to inhibit Pgp at the murine BBB at clinically feasible doses and that [(11)C]HM30181 is not suitable as a PET tracer to visualise cerebral Pgp expression levels.
    European journal of pharmacology 09/2012; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the aim to develop a PET tracer to visualize P-glycoprotein (Pgp) expression levels in different organs, the Pgp inhibitor MC113 was labeled with (11)C and evaluated using small-animal PET. [(11)C]MC113 was synthesized by reaction of O-desmethyl MC113 with [(11)C]methyl triflate. Small-animal PET was performed with [(11)C]MC113 in FVB wild-type and Mdr1a/b((-/-)) mice (n=3 per group) and in a mouse model of high (EMT6Ar1.0) and low (EMT6) Pgp expressing tumor grafts (n=5). In the tumor model, PET scans were performed before and after administration of the reference Pgp inhibitor tariquidar (15mg/kg). Brain uptake of [(11)C]MC113, expressed as area under the time-activity curve from time 0 to 60min (AUC(0-60)), was moderately but not significantly increased in Mdr1a/b((-/-)) compared with wild-type mice (mean±SD AUC(0-60), Mdr1a/b((-/-)): 88±7min, wild-type: 62±6min, P=0.100, Mann Whitney test). In the tumor model, AUC(0-60) values were not significantly different between EMT6Ar1.0 and EMT6 tumors. Neither in brain nor in tumors was activity concentration significantly changed in response to tariquidar administration. Half-maximum effect concentrations (IC(50)) for inhibition of Pgp-mediated rhodamine 123 efflux from CCRFvcr1000 cells were 375±60nM for MC113 versus 8.5±2.5nM for tariquidar. [(11)C]MC113 showed higher brain uptake in mice than previously described Pgp PET tracers, suggesting that [(11)C]MC113 was only to a low extent effluxed by Pgp. However, [(11)C]MC113 was found unsuitable to visualize Pgp expression levels presumably due to insufficiently high Pgp binding affinity of MC113 in relation to Pgp densities in brain and tumors.
    Nuclear Medicine and Biology 09/2012; 39(8):1219-25. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer resistance protein (BCRP) is the most abundant multidrug efflux transporter at the human blood-brain barrier (BBB), restricting brain distribution of various drugs. In this study, we developed a positron emission tomography (PET) protocol to visualize Bcrp function at the murine BBB, based on the dual P-glycoprotein (P-gp)/Bcrp substrate radiotracer [(11)C]tariquidar in combination with the Bcrp inhibitor Ko143. To eliminate the contribution of P-gp efflux to [(11)C]tariquidar brain distribution, we studied mice in which P-gp was genetically knocked out (Mdr1a/b((-/-)) mice) or chemically knocked out by pretreatment with cold tariquidar. We found that [(11)C]tariquidar brain uptake increased dose dependently after administration of escalating doses of Ko143, both in Mdr1a/b((-/-)) mice and in tariquidar pretreated wild-type mice. After 15 mg/kg Ko143, the maximum increase in [(11)C]tariquidar brain uptake relative to baseline scans was 6.3-fold in Mdr1a/b((-/-)) mice with a half-maximum effect dose of 4.98 mg/kg and 3.6-fold in tariquidar (8 mg/kg) pretreated wild-type mice, suggesting that the presented protocol is sensitive to visualize a range of different functional Bcrp activities at the murine BBB. We expect that this protocol can be translated to the clinic, because tariquidar can be safely administered to humans at doses that completely inhibit cerebral P-gp.Journal of Cerebral Blood Flow & Metabolism advance online publication, 25 July 2012; doi:10.1038/jcbfm.2012.112.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 07/2012; · 5.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim of this study was to determine whether the carbon-11-labeled antiepileptic drug [(11)C]mephobarbital is a substrate of P-glycoprotein (Pgp) and can be used to assess Pgp function at the blood-brain barrier (BBB) with positron emission tomography (PET). We performed paired PET scans in rats, wild-type (FVB) and Mdr1a/b((-/-)) mice, before and after intravenous administration of the Pgp inhibitor tariquidar (15mg/kg). Brain-to-blood AUC(0-60) ratios in rats and brain AUC(0-60) values of [(11)C]mephobarbital in wild-type and Mdr1a/b((-/-)) mice were similar in scans 1 and 2, respectively, suggesting that in vivo brain distribution of [(11)C]mephobarbital is not influenced by Pgp efflux. Absence of Pgp transport was confirmed in vitro by performing concentration equilibrium transport assay in cell lines transfected with MDR1 or Mdr1a. PET experiments in wild-type mice, with and without pretreatment with the multidrug resistance protein (MRP) inhibitor MK571 (20mg/kg), and in Mrp1((-/-)) mice suggested that [(11)C]mephobarbital is also not transported by MRPs at the murine BBB, which was also supported by in vitro transport experiments using human MRP1-transfected cells. Our results are surprising, as phenobarbital, the N-desmethyl derivative of mephobarbital, has been shown to be a substrate of Pgp, which suggests that N-methylation abolishes Pgp affinity of barbiturates.
    Epilepsy research 02/2012; 100(1-2):93-103. · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One important mechanism for chemoresistance of tumours is overexpression of the adenosine triphosphate-binding cassette transporter P-glycoprotein (Pgp). Pgp reduces intracellular concentrations of chemotherapeutic drugs. The aim of this study was to compare the suitability of the radiolabelled Pgp inhibitors [(11)C]tariquidar and [(11)C]elacridar with the Pgp substrate radiotracer (R)-[(11)C]verapamil for discriminating tumours expressing low and high levels of Pgp using small-animal PET imaging in a murine breast cancer model. Murine mammary carcinoma cells (EMT6) were continuously exposed to doxorubicin to generate a Pgp-overexpressing, doxorubicin-resistant cell line (EMT6AR1.0 cells). Both cell lines were subcutaneously injected into female athymic nude mice. One week after implantation, animals underwent PET scans with [(11)C]tariquidar (n = 7), [(11)C]elacridar (n = 6) and (R)-[(11)C]verapamil (n = 7), before and after administration of unlabelled tariquidar (15 mg/kg). Pgp expression in tumour grafts was evaluated by Western blotting. [(11)C]Tariquidar showed significantly higher retention in Pgp-overexpressing EMT6AR1.0 compared with EMT6 tumours: the mean ± SD areas under the time-activity curves in scan 1 from time 0 to 60 min (AUC(0-60)) were 38.8 ± 2.2 min and 25.0 ± 5.3 min (p = 0.016, Wilcoxon matched pairs test). [(11)C]Elacridar and (R)-[(11)C]verapamil were not able to discriminate Pgp expression in tumour models. Following administration of unlabelled tariquidar, both EMT6Ar1.0 and EMT6 tumours showed increases in uptake of [(11)C]tariquidar, [(11)C]elacridar and (R)-[(11)C]verapamil. Among the tested radiotracers, [(11)C]tariquidar performed best in discriminating tumours expressing high and low levels of Pgp. Therefore [(11)C]tariquidar merits further investigation as a PET tracer to assess Pgp expression levels in solid tumours.
    European Journal of Nuclear Medicine 01/2012; 39(1):149-59. · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using positron emission tomography (PET) imaging we assessed, in vivo, the interaction between a microdose of (R)-[(11)C]verapamil (a P-glycoprotein (Pgp) substrate) and escalating doses of the Pgp inhibitor tariquidar (3, 4, 6, and 8 mg/kg) at the blood-brain barrier (BBB) in healthy human subjects. We compared the dose-response relationship of tariquidar in humans with data obtained in rats using a similar methodology. Tariquidar was equipotent in humans and rats in its effect of increasing (R)-[(11)C]verapamil brain uptake (expressed as whole-brain volume of distribution (V(T))), with very similar half-maximum-effect concentrations. Both in humans and in rats, brain V(T) approached plateau levels at plasma tariquidar concentrations >1,000 ng/ml. However, Pgp inhibition in humans led to only a 2.7-fold increase in brain V(T) relative to baseline scans (before administration of tariquidar) as compared with 11.0-fold in rats. The results of this translational study add to the accumulating evidence that there are marked species-dependent differences in Pgp expression and functionality at the BBB.
    Clinical Pharmacology &#38 Therapeutics 12/2011; 91(2):227-33. · 6.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Approximately one-third of epilepsy patients are pharmacoresistant. Overexpression of P-glycoprotein and other multidrug transporters at the blood-brain barrier is thought to play an important role in drug-refractory epilepsy. Thus, quantification of regionally different P-glycoprotein activity in the brain in vivo is essential to identify P-glycoprotein overactivity as the relevant mechanism for drug resistance in an individual patient. Using the radiolabeled P-glycoprotein substrate (R)-[(11)C]verapamil and different doses of coadministered tariquidar, which is an inhibitor of P-glycoprotein, we evaluated whether small-animal positron emission tomography can quantify regional changes in transporter function in the rat brain at baseline and 48 h after a pilocarpine-induced status epilepticus. P-glycoprotein expression was additionally quantified by immunohistochemistry. To reveal putative seizure-induced changes in blood-brain barrier integrity, we performed gadolinium-enhanced magnetic resonance scans on a 7.0 tesla small-animal scanner. Before P-glycoprotein modulation, brain uptake of (R)-[(11)C]verapamil was low in all regions investigated in control and post-status epilepticus rats. After administration of 3 mg/kg tariquidar, which inhibits P-glycoprotein only partially, we observed increased regional differentiation in brain activity uptake in post-status epilepticus versus control rats, which diminished after maximal P-glycoprotein inhibition. Regional increases in the efflux rate constant k(2), but not in distribution volume V(T) or influx rate constant K(1), correlated significantly with increases in P-glycoprotein expression measured by immunohistochemistry. This imaging protocol proves to be suitable to detect seizure-induced regional changes in P-glycoprotein activity and is readily applicable to humans, with the aim to detect relevant mechanisms of pharmacoresistance in epilepsy in vivo.
    Journal of Neuroscience 06/2011; 31(24):8803-11. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim of this study was to label the potent dual P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) inhibitor elacridar (1) with (18)F to provide a positron emission tomography (PET) radiotracer to visualize Pgp and BCRP. A series of new 1- and 2-halogen- and nitro-substituted derivatives of 1 (4a-e) was synthesized as precursor molecules and reference compounds for radiolabelling and shown to display comparable in vitro potency to 1 in increasing rhodamine 123 accumulation in a cell line overexpressing human Pgp (MDCKII-MDR1). 1-[(18)F]fluoroelacridar ([(18)F]4b) was synthesized in a decay-corrected radiochemical yield of 1.7±0.9% by a 1-step no-carrier added nucleophilic aromatic (18)F-substitution of 1-nitro precursor 4c. Small-animal PET imaging of [(18)F]4b was performed in naïve rats, before and after administration of unlabelled 1 (5 mg/kg, n=3), as well as in wild-type and Mdr1a/b((-/-))Bcrp1((-/-)) mice (n=3). In PET experiments in rats, administration of unlabelled 1 increased brain activity uptake by a factor of 9.5 (p=0.0002, 2-tailed Student's t-test), whereas blood activity levels remained unchanged. In Mdr1a/b((-/-))Bcrp1((-/-)) mice, the mean brain-to-blood ratio of activity at 60 min after tracer injection was 7.6 times higher as compared to wild-type animals (p=0.0002). HPLC analysis of rat brain tissue extracts collected at 40 min after injection of [(18)F]4b revealed that 93±7% of total radioactivity in brain was in the form of unchanged [(18)F]4b. In conclusion, the in vivo behavior of [(18)F]4b was found to be similar to previously described [(11)C]1 suggesting transport of [(18)F]4b by Pgp and/or BCRP at the rodent BBB. However, low radiochemical yields and a significant degree of in vivo defluorination will limit the utility of [(18)F]4b as a PET tracer.
    Bioorganic & medicinal chemistry 02/2011; 19(7):2190-8. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: although plasma protein binding (PPB) is accepted to be an essential factor in reducing antimicrobial activity, little is known about the underlying mechanisms. One possibility includes impaired penetration of an antimicrobial into bacterial cells in the presence of PPB. As a prerequisite for testing this hypothesis an optimized medium displaying high protein binding without impairing bacterial growth had to be identified for our model compound clindamycin. determination of PPB, bacterial growth and antimicrobial killing was performed in Mueller-Hinton broth (MHB) containing various amounts of human albumin or serum. [(3)H]clindamycin was used to investigate clindamycin penetration into Staphylococcus aureus. of all investigated media only MHB(50%serum) and MHB(70%serum) achieved protein binding comparable to pure serum. In contrast, MHB(20%serum) and most media containing only albumin demonstrated considerably lower protein binding. Pure serum resulted in bacterial growth inhibition compared with MHB while MHB(16%albumin) and MHB(50%serum) did not result in significant differences in bacterial count after 24 h. However, in both MHB(16%albumin) and MHB(50%serum) the antimicrobial activity of clindamycin was reduced by >2 log(10) cfu/mL compared with pure MHB. The radioactive signal after administration of [(3)H]clindamycin to S. aureus was significantly decreased in pure serum as well as in MHB(16%albumin) and MHB(50%serum), while no significant difference was observed for MHB(4%albumin) and MHB(20%serum). reduction of the intracellular radioactive signal in the presence of serum proteins correlated both with the degree of protein binding and reduction of antimicrobial activity supporting the hypothesis of impairment of activity by PPB by reducing intra-bacterial antimicrobial concentrations.
    Journal of Antimicrobial Chemotherapy 11/2010; 66(1):134-7. · 5.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to develop a positron emission tomography (PET) tracer based on the dual P-glycoprotein (P-gp) breast cancer resistance protein (BCRP) inhibitor tariquidar (1) to study the interaction of 1 with P-gp and BCRP in the blood-brain barrier (BBB) in vivo. O-Desmethyl-1 was synthesized and reacted with [(11)C]methyl triflate to afford [(11)C]-1. Small-animal PET imaging of [(11)C]-1 was performed in naïve rats, before and after administration of unlabeled 1 (15 mg/kg, n=3) or the dual P-gp/BCRP inhibitor elacridar (5mg/kg, n=2), as well as in wild-type, Mdr1a/b((-/-)), Bcrp1((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-)) mice (n=3). In vitro autoradiography was performed with [(11)C]-1 using brain sections of all four mouse types, with and without co-incubation with unlabeled 1 or elacridar (1 microM). In PET experiments in rats, administration of unlabeled 1 or elacridar increased brain activity uptake by a factor of 3-4, whereas blood activity levels remained unchanged. In Mdr1a/b((-/-)), Bcrp1((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-)) mice, brain-to-blood ratios of activity at 25 min after tracer injection were 3.4, 1.8 and 14.5 times higher, respectively, as compared to wild-type animals. Autoradiography showed approximately 50% less [(11)C]-1 binding in transporter knockout mice compared to wild-type mice and significant displacement by unlabeled elacridar in wild-type and Mdr1a/b((-/-)) mouse brains. Our data suggest that [(11)C]-1 interacts specifically with P-gp and BCRP in the BBB. However, further investigations are needed to assess if [(11)C]-1 behaves in vivo as a transported or a non-transported inhibitor.
    Bioorganic & medicinal chemistry 08/2010; 18(15):5489-97. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The multidrug efflux transporter breast cancer resistance protein (BCRP) is highly expressed in the blood-brain barrier (BBB), where it limits brain entry of a broad range of endogenous and exogenous substrates. Methyl is a recently discovered BCRP-selective inhibitor, which is structurally derived from the potent P-glycoprotein (P-gp) inhibitor tariquidar. The aim of this study was to develop a new PET tracer based on 1 to map BCRP expression levels in vivo. Compound 1 was labelled with (11)C in its methyl ester function by reaction of the corresponding carboxylic acid 2 with [(11)C]methyl triflate. Positron emission tomography (PET) imaging of [(11)C]-1 was performed in wild-type, Mdr1a/b((-/-)), Bcrp1((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-)) mice (n=3 per mouse type) and radiotracer metabolism was assessed in plasma and brain. Brain-to-plasma ratios of unchanged [(11)C]-1 were 4.8- and 10.3-fold higher in Mdr1a/b((-/-)) and in Mdr1a/b((-/-))Bcrp1((-/-)) mice, respectively, as compared to wild-type animals, but only modestly increased in Bcrp1((-/-)) mice. [(11)C]-1 was rapidly metabolized in vivo giving rise to a polar radiometabolite which was taken up into brain tissue. Our data suggest that [(11)C]-1 preferably interacts with P-gp rather than BCRP at the murine BBB which questions its reported in vitro BCRP selectivity. Consequently, [(11)C]-1 appears to be unsuitable as a PET tracer to map cerebral BCRP expression.
    Nuclear Medicine and Biology 07/2010; 37(5):637-44. · 2.52 Impact Factor
  • Source
    BMC Pharmacology 01/2010;
  • Source
    BMC Pharmacology 01/2010;
  • [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionThe adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) protects the brain from accumulation of lipophilic compounds by active efflux transport across the blood–brain barrier. Changes in Pgp function/expression may occur in neurological disorders, such as epilepsy, Alzheimer’s or Parkinson’s disease. In this work we investigated the suitability of the radiolabeled Pgp inhibitors [11C]elacridar and [11C]tariquidar to visualize Pgp density in rat brain with PET.Methods Rats underwent a first PET scan with [11C]elacridar (n = 5) or [11C]tariquidar (n = 6) followed by a second scan with the Pgp substrate (R)-[11C]verapamil after administration of unlabeled tariquidar at a dose which half-maximally inhibits cerebral Pgp (3 mg/kg). Compartmental modeling using an arterial input function and Logan graphical analysis were used to estimate rate constants and volumes of distribution (VT) of radiotracers in different brain regions.ResultsBrain PET signals of [11C]elacridar and [11C]tariquidar were very low (~ 0.5 standardized uptake value, SUV). There was a significant negative correlation between VT and K1 (i.e. influx rate constant from plasma into brain) values of [11C]elacridar or [11C]tariquidar and VT and K1 values of (R)-[11C]verapamil in different brain regions which was consistent with binding of [11C]inhibitors to Pgp and efflux of (R)-[11C]verapamil by Pgp.Conclusion The small Pgp binding signals obtained with [11C]elacridar and [11C]tariquidar limit the applicability of these tracers to measure cerebral Pgp density. PET tracers with higher (i.e. subnanomolar) binding affinities will be needed to visualize the low density of Pgp in brain.
    NeuroImage 01/2010; 52. · 6.25 Impact Factor
  • Source
    BMC Pharmacology. 01/2010;

Publication Stats

253 Citations
87.75 Total Impact Points

Institutions

  • 2009–2013
    • Medical University of Vienna
      • Department of Clinical Pharmacology
      Vienna, Vienna, Austria
  • 2009–2012
    • AIT Austrian Institute of Technology
      • Department of Health & Environment
      Wien, Vienna, Austria
  • 2010–2011
    • University of Vienna
      • Department of Medicinal Chemistry
      Vienna, Vienna, Austria
  • 2008
    • University of Veterinary Medicine Hannover
      Hanover, Lower Saxony, Germany