Ki-Woong Jeong

Konkuk University, Sŏul, Seoul, South Korea

Are you Ki-Woong Jeong?

Claim your profile

Publications (37)98.58 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatases of regenerating liver (PRLs) constitute a novel class of small, prenylated phosphatases with oncogenic activity. PRL-3 is particularly important in cancer metastasis and represents a potential, therapeutic target. The flexibility of the WPD loop as well as P-loop of protein tyrosine phosphatases is closely related to their catalytic activity. Using nuclear magnetic resonance (NMR) spectroscopy, we studied the structure of vanadate-bound PRL-3, which was generated by addition of sodium orthovanadate to PRL-3. The WPD loop of free PRL-3 extended outside of the active site, forming an open conformation, whereas that of vanadate-bound PRL-3 was directed into the active site by a large movement, resulting in a closed conformation. We suggest that vanadate binding induced structural changes of the WPD loop, P-loop, α4-α6 helices, and polybasic region. Compared to free PRL-3, vanadate-bound PRL-3 has a longer α4 helix, where the catalytic R110 residue coordinates with vanadate in the active site. In addition, the hydrophobic cavity formed by α4-α6 helices with a depth of 14-15 Å can accommodate a farnesyl chain at the truncated prenylation motif of PRL-3, i.e., from R169 to M173. Conformational exchange data suggested that the WPD loop moves between open and closed conformations with a closing rate constant kclose of 7 s-1. This intrinsic loop flexibility of PRL-3 may be related to their catalytic rate and may play a role in the substrate recognition.
    Biochemistry 07/2014; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rhamnetin (1), a commonly occurring plant O-methylated flavonoid, possesses antioxidant properties. To address the potential therapeutic efficacy of 1, its anti-inflammatory activity and mode of action in mouse macrophage-derived RAW264.7 cells stimulated with lipopolysaccharide (LPS) or interferon (IFN)-γ were investigated. Rhamnetin (1) suppressed mouse tumor necrosis factor (mTNF)-α, mouse macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine production in LPS-stimulated macrophages. A nontoxic dose of 1 suppressed nitric oxide production. It was found that the anti-inflammatory effects of 1 are mediated by actions on the p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and cyclooxygenase (COX)-2 pathways in LPS- or IFN-γ-stimulated RAW264.7 cells. It was determined that 1 binds to human JNK1 (9.7 × 10(8) M(-1)) and p38 MAPK (2.31 × 10(7) M(-1)) with good affinity. The binding model showed interactions with the 3'- and 4'-hydroxy groups of the B-ring and the 5-hydroxy group of the A-ring of 1. Further, 1 exerted an anti-inflammatory effect, reducing the levels of pro-inflammatory cytokines and mediators.
    Journal of Natural Products 01/2014; · 3.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In two-dimensional interfacial assemblies, there is an interplay between molecular ordering and interface geometry, which determines the final morphology and order of entire systems. Here we present the interfacial phenomenon of spontaneous facet formation in a water droplet driven by designed peptide assembly. The identified peptides can flatten the rounded top of a hemispherical droplet into a plane by forming a macroscopic two-dimensional crystal structure. Such ordering is driven by the folding geometry of the peptide, interactions of tyrosine and crosslinked stabilization by cysteine. We discover the key sequence motifs and folding structures and study their sequence-specific assembly. The well-ordered, densely packed, redox-active tyrosine units in the YYACAYY (H-Tyr-Tyr-Ala-Cys-Ala-Tyr-Tyr-OH) film can trigger or enhance chemical/electrochemical reactions, and can potentially serve as a platform to fabricate a molecularly tunable, self-repairable, flat peptide or hybrid film.
    Nature Communications 01/2014; 5:3665. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) is an angiogenic protein with neurotrophic and neuroprotective effects. Previously, we reported that triamterene (Trm) inhibits VEGF-Aβ (amyloid β) interactions without affecting other biological activities of VEGF or Aβ [Jeong, K-W. et al. (2011) Biochemistry 50, 4843-4854]. We further showed that molecular motions in the N-terminal disordered loop region of the heparin-binding domain (HBD) are important for interaction with Trm. To investigate the importance of motion at the C-terminal domain of HBD, we constructed a binding model of HBD with heparin octasaccharide (HOS) based on measurements of chemical shift changes and docking studies. Furthermore, the dynamic properties of HBD-HOS and HBD-Trm-HOS complex were assessed by measuring spin relaxation rates. The results showed that the HOS-binding site is composed of two basic clusters consisting of side-chains of residues R13, R14, and K15 and residues K30, R35, and R49. Upon binding HOS, values for the heteronuclear nuclear Overhauser effect near HOS binding sites increased dramatically. CPMG (Carr-Purcell-Meiboom-Gill sequence) experiments as well as R2 relaxation experiment were undertaken to understand millisecond time-scale motions in HBD. There is large relaxation dispersion of residues at Trm and HOS binding sites in free HBD. C-terminal residues such as S34, C48, D51 near the HOS binding sites continued to exhibit slow conformational motions in the HBD-Trm complex while those slow motions disappeared in the bound conformation of HBD with HOS. Collectively, our results demonstrate that the inherent structural flexibilities of the C-terminal region of the HBD are important in the heparin-binding process, and that Trm does not inhibit VEGF-heparin interactions necessary for the biological activities of VEGF.
    Biochemistry 11/2013; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-α, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signal-regulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, 8.79 x 10(5) M(-1). Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK.
    BMB reports 11/2013; · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an α-helical structure from Lys(3) to Lys(21) and from Ala(25) to Val(35), linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as Trp(2) and Phe(5) at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi. [BMB Reports 2013; 46(5): 282-287].
    BMB reports 05/2013; 46(5):282-287. · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cold-shock proteins (Csps)-proteins expressed when ambient temperature drops below growth-supporting temperature-bind to single-stranded nucleic acids and act as RNA chaperones to regulate translation. Listeria monocytogenes is a psychrophilic foodborne pathogen that is problematic for the food industry because it can grow at low temperatures. Structures of Csps from psychrophilic bacteria have not yet been studied. Despite dramatic differences in the thermostability of Csps of various thermophilic microorganisms, these proteins share high primary sequence homology and a high degree of three-dimensional structural similarity. Here, we investigated the structural and dynamic features as well as the thermostability of an L. monocytogenes CspA (Lm-CspA). Lm-CspA has a five-stranded β-barrel structure with hydrophobic core packing and two salt bridges. Upon binding heptathymidine (dT7), values for the heteronuclear nuclear Overhauser effect and order parameters of residues in surface loop regions near nucleic acid binding sites increased dramatically. Moreover, Carr-Purcell-Meiboom-Gill experiments showed that slow motions observed for the nucleic acid binding residues K7, W8, F15, F27, and R56 disappeared in Lm-CspA-dT7. Lm-CspA is less thermostable with a lower melting temperature (40°C) compared with mesophilic and thermophilic Csps. The structural flexibility that accompanies longer surface loops and less hydrophobic core packing as well as a number of salt bridges and unfavorable electrostatic repulsion are likely key factors in the low thermostability of Lm-CspA. This implies that the large conformational flexibility of psychrophilic Lm-CspA, which more easily accommodates nucleic acids at low temperature, is required for RNA chaperone function under cold-shock conditions and for the cold adaptation of L. monocytogenes.
    Biochemistry 03/2013; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An atypical orphan response regulator protein, HP1043 (HP-RR) in Helicobacter pylori, is proven to be essential for cell growth and does not require the well known phosphorelay scheme. HP-RR was identified as a symmetric dimer with two functional domains, an N-terminal regulatory domain (HP-RR) and a C-terminal effector domain (HP-RR). HP-RR is a new class of response regulator, as a phosphorylation-independent regulator. Previously, we have presented a detailed three-dimensional structure of HP-RR using NMR spectroscopy and X-ray crystallography. In this study, in order to understand the functional importance of flexibilities in HP-RR and HP-RR, T, T, heteronuclear NOE experiments have been performed and backbone dynamics of HP-RR and HP-RR were investigated. HP-RR is a symmetric dimer and the interface region, α4-β5-α5 of dimer, showed high rigidity (high S values). Site of rearrangements associated with phosphorylation of HP-RR (Ser: R = 3.382, Ile: R = 5.228) showed slow chemical exchanges. HP-RR is composed of three α-helices flanked on two sides by anti-parallel β-sheets. Low order parameters as well as conformational exchanges in the centers of loop regions known as the DNA binding site and transcription site of HP-RR suggested that flexibility of HP-RR is essential for interaction with DNA. In conclusion, backbone dynamics information for HP-RR implies that structural flexibilities in HP-RR are necessary for the phosphorylation site and the dynamic nature of HP-RR is essential for the regulation of interaction between protein and DNA.
    Molecules and Cells 02/2013; 35(2):158-65. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.
    PLoS ONE 01/2013; 8(11):e80025. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fisetin is a naturally occurring flavonoid with some anti-cancer and anti-inflammation capabilities. In this study, we perform docking studies between human c-Jun N-terminal kinase 1 (JNK 1) and fisetin and proposed a binding model of fisetin and JNK 1, in which the hydroxyl groups of the B ring and oxygen at the 4-position of the C ring play key roles in binding interactions with JNK. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that fisetin exhibits good binding affinity to JNK, . The anti-inflammatory activity of fisetin was also investigated. Fisetin significantly suppressed tumor necrosis factor, the NO production, and macrophage inflammatory cytokine release in LPS-stimulated RAW264.7 mouse macrophages. We found that the anti-inflammatory cascade of fisetin was mediated through the JNK, and cyclooxygenase (COX)-2 pathways. Our findings suggest the potential of fisetin as an anti-inflammatory agent.
    Bulletin- Korean Chemical Society 01/2013; 34(9). · 0.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The novel 43-residue, insect defensin-like peptide coprisin, isolated from the dung beetle, Copris tripartitus, is a potent antibiotic with bacterial cell selectivity, exhibiting antimicrobial activities against Gram-positive and Gram-negative bacteria without exerting hemolytic activity against human erythrocytes. Tests against Staphylococcus aureus using fluorescent dye leakage and depolarization measurements showed that coprisin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of coprisin in aqueous solution by nuclear magnetic resonance spectroscopy, which showed that coprisin has an amphipathic α-helical structure from Ala(19) to Arg(28), and β-sheets from Gly(31) to Gln(35) and Val(38) to Arg(42). Coprisin has electropositive regions formed by Arg(28), Lys(29), Lys(30), and Arg(42) and ITC results proved that coprisin and LPS has electrostatically driven interactions. Using measurements of nitric oxide release and inflammatory cytokine production, we providethe first verification of the anti-inflammatory activity and associated mechanism of an insect defensin, demonstrating that the anti-inflammatory actions of the defensin-like peptide, coprisin, are initiated by suppressing the binding of LPS to toll-like receptor 4, and subsequently inhibiting the phosphorylation of p38 mitogen-activated protein kinase and nuclear translocation of NF-kB. In conclusion, we have demonstrated that an amphipathic helix and an electropositive surface in coprisin may play important roles in its effective interaction with bacterial cell membranes and, ultimately, in its high antibacterial activity and potent anti-inflammatory activity. In addition to elucidating the antimicrobial action of coprisin, this work may provide insight into the mechanism of action of insect defense systems.
    Biochimica et Biophysica Acta 11/2012; · 4.66 Impact Factor
  • Source
    Ju-Ho Lee, Ki-Woong Jeong, Yang-Mee Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a -barrel structure, which includes antiparallel strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.
    Bulletin- Korean Chemical Society 01/2012; 33(8). · 0.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A disintegrin and metalloprotease with thrombospondin domains (ADAMTS) are a member of peptidase and involved in processing of von Willebrand factor as well as cleavage of aggrecan, versican, brevican and neurocan. Among 19 subfamilies of human ADAMTS, ADAMTS-4 is a zinc-binding metalloprotease and is a famous therapeutic target for arthritis. It has been reported that a flavonoid luteolin shows inhibitory activity against ADMATS-4. In this study, we verified that luteolin is a potent inhibitor of ADAMTS-4 and probed the molecular basis of its action. On the basis of a docking study, we proposed a binding model between luteolin and ADAMTS-4 in which 3',4'-dihydroxyl groups in luteolin formed hydrogen bonding with ADMATS-4 and these interactions are important for its inhibitory activity against ADAMTS-4.
    Bulletin- Korean Chemical Society 01/2012; 33(9). · 0.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A putative fatty acid hydratase gene from Macrococcus caseolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was a 68 kDa dimer with a molecular mass of 136 kDa. The enzymatic products formed from fatty acid substrates by the putative enzyme were isolated with high purity (>99%) by solvent fractional crystallization at low temperature. After the identification by GC-MS, the purified hydroxy fatty acids were used as standards to quantitatively determine specific activities and kinetic parameters for fatty acids as substrates. Among the fatty acids evaluated, specific activity and catalytic efficiency (k(cat)/K(m)) were highest for oleic acid, indicating that the putative fatty acid hydratase was an oleate hydratase. Hydration occurred only for cis-9-double and cis-12-double bonds of unsaturated fatty acids without any trans-configurations. The maximum activity for oleate hydration was observed at pH 6.5 and 25 °C with 2% (v/v) ethanol and 0.2 mM FAD. Without FAD, all catalytic activity was abolished. Thus, the oleate hydratase is an FAD-dependent enzyme. The residues G29, G31, S34, E50, and E56, which are conserved in the FAD-binding motif of fatty acid hydratases (GXGXXG((A/S))X((15-21))E((D))), were selected by alignment, and the spectral properties and kinetic parameters of their alanine-substituted variants were analyzed. Among the five variants, G29A, G31A, and E56A showed no interaction with FAD and exhibited no activity. These results indicate that G29, G31, and E56 are essential for FAD-binding.
    Biochimie 12/2011; 94(3):907-15. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-Ketoacyl-acyl carrier protein synthase III (KAS III) is a condensing enzyme in bacterial fatty acid synthesis and a potential target while designing novel antibiotics. In our previous report, we discovered the lead compound YKAs3003, which serves as an inhibitor of Escherichia coli KAS III (ecKAS III), and determined a reliable pharmacophore map from in silico screening. In this study, we determined two pharmacophore maps from receptor-oriented pharmacophore-based in silico screening of the x-ray structure of Staphylococcus aureus KAS III (saKAS III) to identify potent saKAS III inhibitors. We discovered a new potential inhibitor (6) with broad-spectrum antimicrobial activity and 0.8 nM binding affinity for saKAS III, proving the reliability of our pharmacophore map. Using optimization procedures, we identified three new antimicrobial saKAS III inhibitors: 6c (2,4-dichloro-benzoic acid (2,3,4-trihydroxy-benzylidene)-hydrazide), 6e (4-[(3-chloro-pyrazin-2-yl)-hydrazonomethyl]-benzene-1,3-diol), and 6 (4-[(5-trifluoromethyl-pyridin-2-yl)-hydrazonomethyl]-benzene-1,3-diol). All three inhibitors have a novel 4-hydrazonomethyl-benzene-1,3-diol core structure. These inhibitors exhibited high binding affinity to saKAS III and highly selective antimicrobial activities against S. aureus and methicillin-resistant S. aureus, with minimal inhibitory concentration values of 1-2 μg/mL.
    European journal of medicinal chemistry 11/2011; 47(1):261-9. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Papiliocin is a novel 37-residue cecropin-like peptide isolated recently from the swallowtail butterfly, Papilio xuthus. With the aim of identifying a potent antimicrobial peptide, we tested papiliocin in a variety of biological and biophysical assays, demonstrating that the peptide possesses very low cytotoxicity against mammalian cells and high bacterial cell selectivity, particularly against Gram-negative bacteria as well as high anti-inflammatory activity. Using LPS-stimulated macrophage RAW264.7 cells, we found that papiliocin exerted its anti-inflammatory activities by inhibiting nitric oxide (NO) production and secretion of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2, producing effects comparable with those of the antimicrobial peptide LL-37. We also showed that the innate defense response mechanisms engaged by papiliocin involve Toll-like receptor pathways that culminate in the nuclear translocation of NF-κB. Fluorescent dye leakage experiments showed that papiliocin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of papiliocin in 300 mm dodecylphosphocholine micelles by NMR spectroscopy, showing that papiliocin has an α-helical structure from Lys(3) to Lys(21) and from Ala(25) to Val(36), linked by a hinge region. Interactions between the papiliocin and LPS studied using tryptophan blue-shift data, and saturation transfer difference-NMR experiments revealed that Trp(2) and Phe(5) at the N-terminal helix play an important role in attracting papiliocin to the cell membrane of Gram-negative bacteria. In conclusion, we have demonstrated that papiliocin is a potent peptide antibiotic with both anti-inflammatory and antibacterial activities, and we have laid the groundwork for future studies of its mechanism of action.
    Journal of Biological Chemistry 09/2011; 286(48):41296-311. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Papiliocin is a novel 37-residue cecropin-like peptide isolated recently from the swallowtail butterfly, Papilio xuthus. With the aim of identifying a potent antimicrobial peptide, we tested papiliocin in a variety of biological and biophysical assays, demonstrating that the peptide possesses very low cytotoxicity against mammalian cells and high bacterial cell selectivity, particularly against Gram-negative bacteria as well as high anti-inflammatory activity. Using LPS-stimulated macrophages RAW264.7 cells, we found that papiliocin exerted its anti-inflammatory activities by inhibiting nitric oxide (NO) production and secretion of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2, producing effects comparable to those of the antimicrobial peptide LL-37. We also showed that the innate defense response mechanisms engaged by papiliocin involve Toll-like receptor pathways that culminate in the nuclear translocation of NF-κB. Fluorescent dye leakage experiments showed that papiliocin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of papiliocin in 300 mM dodecylphosphocholine (DPC) micelles by NMR spectroscopy, showing that papiliocin has an α-helical structure from Lys3 to Lys21 and from Ala25 to Val36, linked by a hinge region. Interactions between papiliocin and LPS studied using tryptophan blue-shift data and STD-NMR experiments revealed that Trp2 and Phe5 at the N-terminal helix play an important role in attracting papiliocin to the cell membrane of Gram-negative bacteria. In conclusion, we have demonstrated that papiliocin is a potent peptide antibiotic with both anti-inflammatory and antibacterial activities, and have laid the groundwork for future studies of its mechanism of action.
    Journal of Biological Chemistry 09/2011; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protaetiamycine is an insect defensin, derived from the larvae of the beetle Protaetia brevitarsis. In our previous work, we designed 9-mer peptide analogs of protaetiamycine, including 9Pbw2 (RLWLAIKRR-NH(2) ), 9Pbw3 (RLWLAIWRR-NH(2) ), and 9Pbw4 (RLWLAWKRR-NH(2) ). 9Pbw2 and 9Pbw4 showed high antimicrobial activity without cytotoxicity, while 9Pbw3 with higher hydrophobicity compared to 9Pbw2 and 9Pbw4 showed high cytotoxicity as well as high antimicrobial activity (Shin et al., J. Pept. Sci. 2009; 15: 559-568). In this study, we investigated the anti-inflammatory activities of 9Pbw2, 9Pbw3, and 9Pbw4 by quantitation of NO production in LPS-stimulated RAW264.7 cells. The results showed that only 9Pbw3 has strong inhibition of NO production, implying that Trp(7) as well as optimum level of hydrophobicity may play key roles in the anti-inflammatory activity of 9Pbw3. In order to design potent anti-inflammatory peptide with lower cytotoxicity as well as high stability from cleavage by protease compared to 9Pbw3, we synthesized 9Pbw3-D, the all-D-amino acid analog of 9Pbw3. 9Pbw3-D showed less cytotoxicity against RAW264.7 cells as well as considerably stronger inhibition of NO production and inflammation-induced cytokine production in LPS-stimulated RAW264.7 cells than 9Pbw3. 9Pbw3-D inhibited the gene expression of inflammatory-induced cytokine significantly more than 9Pbw3 and showed high resistance to proteolytic digestion. Binding of 9Pbw3-D with LPS caused higher enhancement of the FITC fluorescence as a result of its stronger interaction with LPS compared to that of 9Pbw3 and this result is in good agreement with their anti-inflammatory activities. 9Pbw3-D with higher anti-inflammatory activity as well as lower cytotoxicity against mammalian cell compared to 9Pbw3 can be a potent noncytotoxic antibiotic candidates.
    Journal of Peptide Science 07/2011; 17(10):675-82. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn(2+) that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of K(m) and dramatic decrease of k(cat), and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity.
    Biochimie 06/2011; 93(10):1659-67. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF), which has neurotrophic and neuroprotective effects in addition to its major role in angiogenesis, interacts with Aβ and accumulates in the senile plaques of Alzheimer's disease (AD) patients' brains. It is known that Aβ binds to the heparin-binding domain (HBD) of the 165-amino acid VEGF variant, VEGF(165). In this study, we showed that triamterene (Trm) inhibits VEGF--Aβ interaction without affecting other biological activities of VEGF or Aβ. We investigated the importance of structural and dynamic features of HBD for its molecular-recognition processes. The binding model of HBD and Trm was constructed based on measurements of chemical shift changes and docking study. The results showed that the loop region (S11-L17) and F18 at the beginning of the first β-sheet in the HBD constitute the inhibitor binding site. The N1 atom of pteridine ring of Trm forms hydrogen bonding with backbone amide proton of R13, and the phenyl ring took part in a hydrophobic interaction with the aromatic ring of F18. To investigate the functional importance of the inherent structural flexibility of the HBD in VEGF, the dynamic properties of free HBD and HBD--Trm complex were assessed by measuring spin relaxation rates, and the backbone dynamics were investigated by model-free analysis. The residues in the disordered loop region of the N-terminus exhibited conformational exchanges in free HBD, and flexibility of this loop region decreased dramatically upon binding to Trm, suggesting that Aβ as well as inhibitor may recognize these unique dynamic features of the HBD. Furthermore, C-terminal residues continued to exhibit slow conformational motions, even in the HBD--Trm complex, implying that these motions at the C-terminus of the HBD might be important for interactions with heparin molecules. The flexibility of HBD demonstrated here should be essential for VEGF function and interaction with other protein partners.
    Biochemistry 06/2011; 50(22):4843-54. · 3.38 Impact Factor