Nina Oberle

German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany

Are you Nina Oberle?

Claim your profile

Publications (12)65.93 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) can suppress other immune cells and, thus, are critical mediators of peripheral self-tolerance. On the one hand, Tregs avert autoimmune disease and allergies. On the other hand, Tregs can prevent immune reactions against tumors and pathogens. Despite the importance of Tregs, the molecular mechanisms of suppression remain incompletely understood and controversial. Proliferation and cytokine production of CD4(+)CD25(-) conventional T cells (Tcons) can be inhibited directly by Tregs. In addition, Tregs can indirectly suppress Tcon activation via inhibition of the stimulatory capacity of antigen presenting cells. Direct suppression of Tcons by Tregs can involve immunosuppressive soluble factors or cell contact. Different mechanisms of suppression have been described, so far with no consensus on one universal mechanism. Controversies might be explained by the fact that different mechanisms may operate depending on the site of the immune reaction, on the type and activation state of the suppressed target cell as well as on the Treg activation status. Further, inhibition of T cell effector function can occur independently of suppression of proliferation. In this review, we summarize the described molecular mechanisms of suppression with a particular focus on suppression of Tcons and rapid suppression of T cell receptor-induced calcium (Ca(2+)), NFAT, and NF-κB signaling in Tcons by Tregs.
    Frontiers in Immunology 01/2012; 3:51.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+)CD25(++)Foxp3(+) regulatory T cells (Tregs) control self-reactive cells to maintain peripheral tolerance. Treg homeostasis has to be controlled tightly to ensure balanced Treg-mediated suppression. One mechanism that regulates the CD4(+) T cell pool is activation-induced cell death (AICD). This is mimicked in vitro by TCR restimulation-induced expression of the death ligand CD95L (FasL/APO-1L/CD178) in expanded T cells. These cells express the death receptor CD95 (Fas/APO-1), and binding of CD95L to CD95 results in AICD. In contrast, Tregs do not undergo AICD upon TCR (re)stimulation in vitro despite a functional CD95 cell death pathway. In this study, we show that human and murine Tregs express low levels of CD95L upon stimulation. Knockdown of the transcriptional repressor Foxp3 partially rescues CD95L expression and AICD in human Tregs. Moreover, upon stimulation Foxp3-mutant Tregs from Scurfy mice express CD95L similar to conventional T cells. We further addressed whether exogenous CD95 stimulation provides a mechanism of Treg homeostatic control in vivo in mice. Triggering of CD95 reduced Treg numbers systemically as reflected by in vivo imaging and decreased GFP(+) Treg numbers ex vivo. Our study reveals that Foxp3 negatively regulates CD95L expression in Tregs and demonstrates that Tregs are susceptible to homeostatic control by CD95 stimulation.
    The Journal of Immunology 08/2011; 187(4):1684-91. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+)CD25(hi)Foxp3(+) regulatory T cells (T(regs)) are critical mediators of self-tolerance, which is crucial for the prevention of autoimmune disease, but T(regs) can also inhibit antitumor immunity. T(regs) inhibit the proliferation of CD4(+)CD25(-) conventional T cells (T(cons)), as well as the ability of these cells to produce effector cytokines; however, the molecular mechanism of suppression remains unclear. Here, we showed that human T(regs) rapidly suppressed the release of calcium ions (Ca(2+)) from intracellular stores in response to T cell receptor (TCR) activation in T(cons). The inhibition of Ca(2+) signaling resulted in decreased dephosphorylation, and thus decreased activation, of the transcription factor nuclear factor of activated T cells 1 (NFAT1) and reduced the activation of nuclear factor κB (NF-κB). In contrast, Ca(2+)-independent events in T(cons), such as TCR-proximal signaling and activation of the transcription factor activator protein 1 (AP-1), were not affected during coculture with T(regs). Despite suppressing intracellular Ca(2+) mobilization, coculture with T(regs) did not block the generation of inositol 1,4,5-trisphosphate in TCR-stimulated T(cons). The T(reg)-induced suppression of the activity of NFAT and NF-κB and of the expression of the gene encoding the cytokine interleukin-2 was reversed in T(cons) by increasing the concentration of intracellular Ca(2+). Our results elucidate a previously unrecognized and rapid mechanism of T(reg)-mediated suppression. This increased understanding of T(reg) function may be exploited to generate possible therapies for the treatment of autoimmune diseases and cancer.
    Science Signaling 01/2011; 4(204):ra90. · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the frequency and suppressive capacity of regulatory T cells (T(reg)) and their association with clinical parameters in patients with systemic scleroderma (SSc). Peripheral blood from 25 patients with SSc, 15 patients with localised scleroderma (LS) and 29 healthy controls (HC) was studied. Analysis of CD4(+) forkhead box P3 (Foxp3)(+) and CD4(+)CD25(++)Foxp3(+) T(reg) subpopulations was carried out by flow cytometry and cell proliferation was quantified by (3)H-thymidine incorporation. Quantitative analysis of T(reg) was further performed in skin biopsies from 17 patients with SSc and 21 patients with LS using anti-CD4 and anti-Foxp3 monoclonal antibodies for immunohistochemistry. The frequency of CD4(+)Foxp3(+) and CD4(+)CD25(++)Foxp3(+) T(reg) in peripheral blood from patients with SSc was not significantly different from that of patients with LS or HC. The suppressive capacity of CD4(+)CD25(++) T(reg) in SSc was also found to be similar to that of HC. Phenotypic and functional data revealed no significant difference between the limited or diffuse form of SSc. Moreover, therapy with bosentan showed no significant effect on the frequency of T(reg) during the course of the disease. However, the frequency of T(reg) in skin lesions from patients with SSc or LS, determined as the percentage of CD4(+) cells expressing Foxp3 in the inflammatory infiltrate, was significantly reduced compared with other inflammatory skin diseases. These results indicate that although the authors found no defect in the frequency or function of peripheral T(reg) subpopulations, the reduction of CD4(+)Foxp3(+) T(reg) in the skin of patients with SSc may be important in the pathogenesis of the disease.
    Annals of the rheumatic diseases 11/2010; 70(8):1475-81. · 8.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous T-cell lymphoma (CTCL) has been suggested by in vitro experiments to represent a malignant CD4+ T-cell proliferation with a regulatory T-cell (Treg) phenotype (CD4+CD25+FOXP3+). We investigated percentages of FOXP3+ and CD25+ cells in the blood of 15 Sézary, 14 mycosis fungoides (MF), and 10 psoriasis (Pso) patients and 20 normal healthy donors (NHDs). We found similar numbers of FOXP3+ cells in MF (10.4% of blood CD4+ cells) and Pso (11.1%) patients and NHDs (9.8%). In 8 of 15 (53%) Sézary patients, significantly reduced percentages of FOXP3+ cells were seen in blood (2.9%) and skin (10.4%). Interestingly, 6 of 15 (40%) Sézary patients showed significantly increased percentages of FOXP3+ cells (39.7% (blood), 20.3% (skin)); however, these cells did not express CD25. In these latter patients, clone-specific TCR-Vbeta-chain antibodies were used to demonstrate that these FOXP3+CD25- cells were monoclonal CTCL tumor cells. FOXP3+CD25- CTCL tumor cells showed a highly demethylated status of the foxp3 gene locus similar to Treg cells, and they were functionally able to suppress IL-2 mRNA induction in TCR-stimulated conventional T cells. Thus, FOXP3+CD25- CTCL tumor cells with functional features of Treg cells define a subgroup of Sézary patients who might carry a different prognosis and might require differential treatment.
    Journal of Investigative Dermatology 08/2009; 129(12):2875-85. · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4+CD25(high) forkhead box P3+ regulatory T cells (Treg) are critical mediators of peripheral self-tolerance and immune homeostasis. Treg suppress proliferation and cytokine production of conventional T cells (Tcon). The exact mechanism of suppression, however, is still unknown. To gain a better understanding of Treg function, we investigated the kinetics of cytokine suppression in Tcon reisolated from cocultures with preactivated human Treg. Treg inhibited induction of Th1 cytokine mRNA as early as 1 h after stimulation, whereas induction/suppression of Th2 cytokines was delayed to 10-15 h. We show that immediate cytokine mRNA suppression in Tcon was neither dependent on TGF-beta/IL-10 or IL-2 consumption, nor on induction of the transcriptional-repressor forkhead box P3 or other anergy-related genes (e.g., gene related to anergy, transducer of ErbB-2, forkhead homolog-4, repressor of GATA, inducible cAMP early repressor). In contrast, lymphocyte activation gene 3, suppressor of cytokine signaling 1, and suppressor of cytokine signaling 3 mRNA were strongly up-regulated in Tcon in the presence of Treg. However, protein analysis did not confirm a role for these proteins in early suppression. Thus, the identification of a fast inhibitory mechanism in Tcon induced by Treg constitutes an important step for future efforts to unravel the entire elusive suppressive mechanism.
    The Journal of Immunology 10/2007; 179(6):3578-87. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To define the phenotype and function of CD4+,CD25+ regulatory T cells (Treg) in patients with cutaneous lupus erythematosus (CLE), a heterogeneous autoimmune disease characterized primarily by inflammatory skin lesions. The number of Treg in skin specimens obtained from patients with various subtypes of CLE was investigated by immunohistochemical analysis, using anti-Foxp3 and anti-CD4 monoclonal antibodies. Furthermore, characterization of peripheral blood CD4+,CD25+ Treg from normal healthy donors and patients with CLE was carried out by flow cytometry, analyzing the expression of Foxp3 and Treg subpopulations. We also purified CD4+,CD25(high) Treg obtained from patients with CLE and tested the sensitivity of these cells to CD95L-mediated apoptosis. Quantitative analysis of CD4+ T cells in skin lesions from patients with CLE revealed that the number was similar to that in lesions from patients with other chronic inflammatory diseases, but the number of Foxp3+ Treg in CLE was significantly reduced. There was no correlation between disease subtype and the frequency of Foxp3+ Treg in the skin of patients with CLE. In peripheral blood, no significant differences were observed in the number and phenotype of CD4+,CD25+ Treg or in the sensitivity to apoptosis of CD4+,CD25(high) Treg derived from patients with CLE and those derived from normal healthy donors. These data suggest that an organ-specific abnormality of Treg in the skin underscores the importance of analyzing Treg in the affected tissue. Such a local process might give insight into the pathogenic mechanisms of CLE and differs from a global peripheral dysfunction as reported for patients with a systemic manifestation of the disease.
    Arthritis & Rheumatology 07/2007; 56(6):1910-20. · 7.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most CD4(+)CD25(hi)FOXP3(+) regulatory T cells (T(regs)) from adult peripheral blood express high levels of CD45RO and CD95 and are prone to CD95L-mediated apoptosis in contrast to conventional T cells (T(convs)). However, a T(reg) subpopulation remained consistently apoptosis resistant. Gene microarray and 6-color flow cytometry analysis including FOXP3 revealed an increase in naive T-cell markers on the CD95L-resistant T(regs) compared with most T(regs). In contrast to T(regs) found in adult humans, most CD4(+)CD25(+)FOXP3(+) T cells found in cord blood are naive and exhibit low CD95 expression. Furthermore, most of these newborn T(regs) are not sensitive toward CD95L similar to naive T(regs) from adult individuals. After short stimulation with anti-CD3/CD28 monoclonal antibodies (mAbs), cord blood T(regs) strongly up-regulated CD95 and were sensitized toward CD95L. This functional change was paralleled by a rapid up-regulation of memory T-cell markers on cord blood T(regs) that are frequently found on adult memory T(regs). In summary, we show a clear functional difference between naive and memory T(regs) that could result in different survival rates of those 2 cell populations in vivo. This new observation could be crucial for the planning of therapeutic application of T(regs).
    Blood 12/2006; 108(10):3371-8. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous T-cell lymphomas (CTCL) are mainly comprised of two variants: mycosis fungoides (MF) with CD4(+) tumor cells confined to the skin and the leukemic Sézary syndrome with tumor cell spread to the blood. In this study, we investigated cutaneous expression of the regulatory T-cell (T(reg)) marker FOXP3 in 30 CTCL patients. Immunohistochemical analysis revealed significantly lower numbers of CD4(+)FOXP3(+) cells within the dermal lymphomononuclear infiltrate of Sézary patients (16% FOXP3(+) cells of CD4(+) cells) in contrast to MF (43% FOXP3(+) cells (P<0.05)) and rare types of CTCL (45% FOXP3(+) cells). Furthermore, CD4(+)FOXP3(+) T cells were also markedly reduced in the CD4(+) population within the peripheral blood of Sézary patients compared to controls as determined by fluorescence-activated cell sorter, quantitative PCR and functional analyses. The data support the conclusion that the neoplastic cells in CTCL do not express the T(reg) marker FOXP3. Our data also identify Sézary syndrome as, to our knowledge, the first reported neoplastic disease with a clear reduction in T(reg) numbers within the CD4(+) population. This lack of T(reg) might account for the more aggressive nature of Sézary syndrome compared with other CTCL.
    Leukemia 06/2006; 20(6):1123-9. · 10.16 Impact Factor
  • Clinical Immunology - CLIN IMMUNOL. 01/2006; 119.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) suppress T cell function and protect rodents from autoimmune disease. Regulation of T(reg) during an immune response is of major importance. Enhanced survival of T(reg) is beneficial in autoimmune disease, whereas increased depletion by apoptosis is advantageous in cancer. We show here that freshly isolated FACS-sorted T(reg) are highly sensitive toward CD95-mediated apoptosis, whereas other T cell populations are resistant to CD95-induced apoptosis shortly after isolation. In contrast, TCR restimulation of T(reg) in vitro revealed a reduced sensitivity toward activation-induced cell death compared with CD4(+)CD25(-) T cells. Thus, the apoptosis phenotype of T(reg) is unique in comparison to other T cells, and this might be further explored for novel therapeutic modulations of T(reg).
    The Journal of Immunology 08/2005; 175(1):32-6. · 5.52 Impact Factor
  • Source

Publication Stats

415 Citations
65.93 Total Impact Points

Institutions

  • 2007–2012
    • German Cancer Research Center
      • Division of Immunogenetics
      Heidelberg, Baden-Wuerttemberg, Germany
  • 2005–2006
    • Universität Heidelberg
      • • Department of Neonatology
      • • Neurological Clinic
      Heidelberg, Baden-Wuerttemberg, Germany