Bernard D Gary

University of South Alabama, Mobile, Alabama, United States

Are you Bernard D Gary?

Claim your profile

Publications (29)92.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel spirooxindole derivatives have been synthesized through a highly efficient and green one-pot multicomponent reaction. The synthesized compounds were evaluated for their growth inhibitory activity against two cancer cell lines, the human colorectal cancer cell line HT-29 and the triplenegative breast cancer cell line MDA-231. Compound 5, methyl 2-amino-2',5-dioxo-5,7-dihydrospiro[furo[3,4-b]pyran-4,3'-indoline]-3-carboxylate was the most active compound towards HT-29 cell line with IC50 of 20 μM. Compound 22, isopropyl 2-amino-5'-chloro-7,7- dimethyl-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3'-indoline]-3-carboxylate was the most potent towards MDA-231 cell line with IC50 11 μM. The SAR studies on the synthesized compounds have shown a reversed pattern of activity towards the two cell lines indicating different mechanisms of action.
    Chemical Rapid Communications. 09/2014; 2(2):33-40.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel series of quinazolin-4(3H)-one/Schiff base hybrids was rationally designed and synthesized. The prepared compounds were evaluated for in vitro activity to inhibit phosphodiesterase 4 (PDE4), where several of them showed good-to-moderate activity compared to rolipram. Compound 7 showed potent PDE4 inhibition in this series, with an IC50 of 1.60 µM. Compounds that showed PDE4 inhibition were further assessed for antiproliferative activity using different human tumor cell lines. Compound 10 exhibited significant antiproliferative activity with IC50 values of 140, 79, and 320 nM in breast, lung, and colon tumor cells, respectively. Docking of compound 7 in the active site of PDE4B illustrates its possible binding mode and provides insight for further optimizations of this novel scaffold for inhibiting PDE4.
    Archiv der Pharmazie 07/2014; · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cyclic nucleotide phosphodiesterase 10A (PDE10) has been mostly studied as a therapeutic target for certain psychiatric and neurological conditions, although a potential role in tumorigenesis has not been reported. Here we show that PDE10 is elevated in human colon tumor cell lines compared with normal colonocytes, as well as in colon tumors from human clinical specimens and intestinal tumors from Apc(Min/+) mice compared with normal intestinal mucosa, respectively. An isozyme and tumor-selective role of PDE10 were evident by the ability of small-molecule inhibitors and small interfering RNA knockdown to suppress colon tumor cell growth with reduced sensitivity of normal colonocytes. Stable knockdown of PDE10 by short hairpin RNA also inhibits colony formation and increases doubling time of colon tumor cells. PDE10 inhibition selectively activates cGMP/cGMP-dependent protein kinase signaling to suppress β-catenin levels and T-cell factor (TCF) transcriptional activity in colon tumor cells. Conversely, ectopic expression of PDE10 in normal and precancerous colonocytes increases proliferation and activates TCF transcriptional activity. These observations suggest a novel role of PDE10 in colon tumorigenesis and that inhibitors may be useful for the treatment or prevention of colorectal cancer.Oncogene advance online publication, 7 April 2014; doi:10.1038/onc.2014.94.
    Oncogene 04/2014; · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triple-negative breast cancer (TNBC) is a highly diverse group that is associated with an aggressive phenotype. Its treatment has been challenging due to its heterogeneity and absence of well-defined molecular targets. Thus, there is an urgent need to identify novel agents with therapeutic application. NF-κB is over-expressed in many breast cancers; thus, inactivation of the NF-κB pathway could serve as a therapeutic target. Here we report for the first time the anti-tumor activity of panepoxydone (PP), a NF-κB inhibitor isolated from an edible mushroom, in several breast cancer cell lines.
    PLoS ONE 01/2014; 9(6):e98370. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two series of 2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-1-methyl-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitriles 5a-h and 4-(4-chlorophenyl)-2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitriles 6a-h were synthesized via a cyclocondensation reaction of the corresponding 2-hydrazinopyrimidines 3a,b with the appropriate 2-propen-1-ones 4a-h. The target compounds were screened for their antiproliferative activity against A 549 (lung), HT 29 (colon), MCF 7 and MDA-MB 231 (breast) cell lines. The two most susceptible cell lines were the colon (HT 29) and breast (MDA-MB 231). Generally, the 4-unsubstitutedphenylpyrimidine derivatives 5a-h were more active than their 4-chlorophenylpyrimidine analogs 6a-h. Compounds 5e and 5g, showed high activity against three of the cell lines. The most active compound 5c possessed IC50 = 1.76 μM against A 549 cell line.
    European journal of medicinal chemistry 10/2013; 70C:273-279. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Derivatives with scaffolds of 1,3,5-tri-substituted pyrazoline and 1,3,4,5-tetra-substituted pyrazoline were synthesized and tested for their inhibitory effects versus the p53(+/+) HCT116 and p53(-/-) H1299 human tumor cell lines. Several compounds were active against the two cell lines displaying IC50 values in the low micromolar range with a clearly more pronounced effect on the p53(+/+) HCT116 cells. The compound class shows excellent developability due to the modular synthesis, allowing independent optimization of all three to four key substituents to improve the properties of the molecules.
    Bioorganic & medicinal chemistry 10/2013; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NSAIDs display promising antineoplastic activity for colorectal and other cancers, but toxicity from cyclooxygenase (COX) inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not required COX inhibition, although the underlying mechanism is poorly understood. Here we report that the NSAID, sulindac sulfide (SS) inhibits cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. SS did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors, tadalafil and sildenafil, also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which SS and the cGMP/PKG pathway inhibits colon tumor cell growth appears to involve the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin TCF transcriptional activity, leading to down-regulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP degrading isozymes.
    Molecular Cancer Therapeutics 06/2013; · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analogues with the scaffolds of 3-cyano-4-alkoxyphenyl-6-bromoaryl-2-pyridone and 2-amino-3-cyano-4-alkoxyphenyl-6-bromoarylpyridine were synthesized. Cyclization of the 2-amino derivatives with formic acid and formamide gave the corresponding pyrido[2,3-d]pyrimidin-4(3H)-one and the pyrido[2,3-d]-pyrimidin-4-amine derivatives, respectively. Active phosphodiesterase 3 (PDE3) inhibitors were identified from each of the four aforementioned scaffolds. This is the first report that pyrido[2,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4-amine derivatives can inhibit PDE3. The analogues with the pyridone and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds inhibited both cAMP and cyclic guanosine monophosphate (cGMP) hydrolysis by PDE3, while the amine containing scaffolds were more selective for cGMP hydrolysis. This observation may set the base for substrate-selective pharmacological modulation of this important class of drug targets and with less side effects, particularly tachcardia. The dual inhibitors of PDE3 were more potent inhibitor towards the growth of HT-29 cancer cell lines.
    CHEMICAL & PHARMACEUTICAL BULLETIN 04/2013; · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analogues with the scaffolds of 3-cyano-4-alkoxyphenyl-6-bromoaryl-2-pyridone and 2-amino-3-cyano-4-alkoxyphenyl-6-bromoarylpyridine were synthesized. Cyclization of the 2-amino derivatives with formic acid and formamide gave the corresponding pyrido[2,3-d]pyrimidin-4(3H)-one and the pyrido[2,3-d]-pyrimidin-4-amine derivatives, respectively. Active phosphodiesterase 3 (PDE3) inhibitors were identified from each of the four aforementioned scaffolds. This is the first report that pyrido[2,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4-amine derivatives can inhibit PDE3. The analogues with the pyridone and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds inhibited both cAMP and cyclic guanosine monophosphate (cGMP) hydrolysis by PDE3, while the amine containing scaffolds were more selective for cGMP hydrolysis. This observation may set the base for substrate-selective pharmacological modulation of this important class of drug targets and with less side effects, particularly tachcardia. The dual inhibitors of PDE3 were more potent inhibitor towards the growth of HT-29 cancer cell lines.
    Chemical & pharmaceutical bulletin 01/2013; 61(4):405-10. · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New derivatives with the tetrahydro-β-carboline-imidazolidinedione and tetrahydro-β-carboline-piperazinedione scaffolds and a pendant bromothienyl moiety at C-5/C-6 were synthesized and tested for their ability to inhibit PDE5 in vitro. The following SAR can be concluded: The tetracyclic scaffold is essential for PDE5 inhibition; the ethyl group is the most suitable among the adopted N-substituents on the terminal ring (hydantoin/piperazinedione); the appropriate stereochemistry of C-5/C-6 derived from the aldehyde rather than C-11a/C-12a derived from tryptophan appears crucial for inhibition of PDE5; surprisingly, derivatives with the hydantoin terminal ring are more active than their analogs with the piperazinedione ring; the selectivity versus PDE5 relative to PDE11 with cGMP as a substrate is mainly a function of the substitution and stereochemistry pattern of the external ring, in other words of the interaction with the H-loop residues of the isozymes. Thirteen derivatives showed PDE5 inhibitory activity with IC(50) values in the range of 0.16-5.4 µm. Compound 8 was the most potent PDE5 inhibitor and showed selectivity towards PDE5 versus other PDEs, with a selectivity index of 49 towards PDE5 rather than PDE11 with cGMP as the substrate.
    Archiv der Pharmazie 01/2013; 346(1):23-33. · 1.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By studying the co-crystal information of interactions between PDE5 and its inhibitors, forty new tetrahydro-β-carbolines based-analogues were synthesized, and tested for their PDE5 inhibition. Some compounds were as active as tadalafil in inhibiting PDE5 and of better selectivity profile particularly versus PDE11A, the nature of the terminal ring and its nitrogen substituent are the main determinants of selectivity. Ensemble docking confirmed the role of H-loop closed conformer in activity versus its occluded and open forms. Conformational studies showed the effect of bulkiness of the terminal ring N-alkyl substituent on the formation of stable enzyme ligands conformers. The difference in potencies of hydantoin and piperazinedione analogues, together with the necessity of C-5/C-6 R-absolute configuration has been revealed through molecular docking.
    European journal of medicinal chemistry 09/2012; 57C:329-343. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely reported to inhibit tumor growth by a COX-independent mechanism, although alternative targets have not been well defined or used to develop improved drugs for cancer chemoprevention. Here, we characterize a novel sulindac derivative referred to as sulindac benzylamine (SBA) that does not inhibit COX-1 or COX-2, yet potently inhibits the growth and induces the apoptosis of human colon tumor cells. The basis for this activity appears to involve cyclic guanosine 3',5',-monophosphate phosphodiesterase (cGMP PDE) inhibition as evident by its ability to inhibit cGMP hydrolysis in colon tumor cell lysates and purified cGMP-specific PDE5, increase intracellular cGMP levels, and activate cGMP-dependent protein kinase G at concentrations that suppress tumor cell growth. PDE5 was found to be essential for colon tumor cell growth as determined by siRNA knockdown studies, elevated in colon tumor cells as compared with normal colonocytes, and associated with the tumor selectivity of SBA. SBA activation of PKG may suppress the oncogenic activity of β-catenin as evident by its ability to reduce β-catenin nuclear levels, Tcf (T-cell factor) transcriptional activity, and survivin levels. These events preceded apoptosis induction and appear to result from a rapid elevation of intracellular cGMP levels following cGMP PDE inhibition. We conclude that PDE5 and possibly other cGMP degrading isozymes can be targeted to develop safer and more efficacious NSAID derivatives for colorectal cancer chemoprevention.
    Cancer Prevention Research 05/2012; 5(6):822-33. · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two series of compounds with the general formula of 4,6-diaryl-2-oxo-1,2 dihydropyridine-3-carbonitriles and their isosteric imino derivatives were synthesized through a one pot reaction of acetophenone, aldehyde and ammonium acetate with ethyl cyanoacetate or malononitrile, respectively. The synthesized compounds were evaluated for tumor cell growth inhibitory using the human HT-29 colon and MDA-MB-231 breast tumor cell lines. Compound 4-(2- Ethoxyphenyl)-2-imino-6-(4-fluorophenyl)-1,2-dihydropyridine-3 carbonitrile (6) showed IC50 value of 0.70 μM versus HT-29. Meanwhile, compound 4-(2-Hydroxyphenyl)-2-imino-6-(4-fluorophenyl)-1,2-dihydropyridine-3-carbonitrile (4) showed IC50 value of 4.6 μM versus MDA-MB-231. Docking compound 10 to possible molecular targets, survivin and PIM1 kinase showed appreciable interactions with both, which suggest possible targets for the antitumor activity of this novel class of anticancer compounds.
    Medicinal chemistry (Shāriqah (United Arab Emirates)) 04/2012; 8(3):392-400. · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-steroidal anti-inflammatory drugs (NSAIDs) have been widely reported to display strong efficacy for cancer chemoprevention, although their mechanism of action is poorly understood. The most well-documented effects of NSAIDs include inhibition of tumor cell proliferation and induction of apoptosis, but their effect on tumor cell invasion has not been well studied. Here, we show that the NSAID, sulindac sulfide (SS) can potently inhibit the invasion of human MDA-MB-231 breast and HCT116 colon tumor cells in vitro at concentrations less than those required to inhibit tumor cell growth. To study the molecular basis for this activity, we investigated the involvement of microRNA (miRNA). A total of 132 miRNAs were found to be altered in response to SS treatment, including miR-10b, miR-17, miR-21 and miR-9, which have been previously implicated in tumor invasion and metastasis. We confirmed that these miRNA can stimulate tumor cell invasion and show that SS can attenuate their invasive effects by downregulating their expression. Employing luciferase and chromatin immunoprecipitation assays, NF-κB was found to bind the promoters of all four miRNAs to suppress their expression at the transcriptional level. We show that SS can inhibit the translocation of NF-κB to the nucleus by decreasing the phosphorylation of IKKβ and IκB. Analysis of the promoter sequences of the miRNAs suppressed by SS revealed that 81 of 115 sequences contained NF-κB-binding sites. These results show that SS can inhibit tumor cell invasion by suppressing NF-κB-mediated transcription of miRNAs.Oncogene advance online publication, 30 January 2012; doi:10.1038/onc.2011.655.
    Oncogene 01/2012; · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drugs (NSAID) such as sulindac sulfide (SS) display promising antineoplastic properties, but toxicities resulting from COX inhibition limit their clinical use. Although COX inhibition is responsible for the anti-inflammatory activity of SS, recent studies suggest that phosphodiesterase (PDE) 5 inhibition and activation of cyclic guanosine monophosphate (cGMP) signaling are closely associated with its ability to induce apoptosis of tumor cells. However, the underlying mechanisms responsible for apoptosis induction, factors that influence sensitivity of tumor cells to SS, and the importance of PDE5 for breast tumor cell growth have not been established. Here we show that SS can induce apoptosis of breast tumor cells, which predominantly rely on PDE5 for cGMP hydrolysis but not normal mammary epithelial cells, which rely on PDE isozymes other than PDE5 for cGMP hydrolysis. Inhibition of PDE5 and activation of protein kinase G (PKG) by SS was associated with increased β-catenin phosphorylation, decreased β-catenin mRNA and protein levels, reduced β-catenin nuclear localization, decreased T-cell factor/lymphoid enhancer factor (Tcf/Lef) promoter activity, and decreased expression of Wnt/β-catenin-regulated proteins. Suppression of PDE5 with siRNA or known PDE5 inhibitors was sufficient to selectively induce apoptosis and attenuate β-catenin-mediated transcription in breast tumor cells with minimal effects on normal mammary epithelial cells. These findings provide evidence that SS induces apoptosis of breast tumor cells through a mechanism involving inhibition of PDE5 and attenuation of oncogenic Wnt/β-catenin-mediated transcription. We conclude that PDE5 represents a novel molecular target for the discovery of safer and more efficacious drugs for breast cancer chemoprevention.
    Cancer Prevention Research 04/2011; 4(8):1275-84. · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Starting from tadalafil as a template, a series of functionalized tetrahydro-β-carboline derivatives have been prepared and identified as novel potent and selective PDE5 inhibitors. Replacing the 3,4-methylenedioxyphenyl at position 6 of tadalafil, together with elongation of the N2-methyl substituent and manipulation of the stereochemical aspects of the two chiral carbons led to the identification of compound XXI, a highly potent PDE5 inhibitor (IC(50)  = 3 nM). Compound XXI was also highly selective for PDE5 versus PDE3B, PDE4B, and PDE11A, with a selectivity index of 52 and 235 towards PDE5 rather than PDE11 with both cAMP and cGMP as substrate, respectively.
    Archiv der Pharmazie 03/2011; 344(3):149-57. · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New derivatives based upon the tetrahydro-β-carboline-hydantoin and tetrahydro-β-carboline-piperazinedione scaffolds were synthesized. All compounds were evaluated for their ability to inhibit PDE5 in vitro, and numerous compounds with IC(50) values in the low nanomolar range were identified including compounds derived from l-tryptophan. Compounds with high potency versus PDE5 were then evaluated for inhibitory activity against other PDEs to assess isozyme selectivity. Compound 5R,11aS-5-(3,4-dichlorophenyl)-2-ethyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)dione 14 showed a selectivity index of >200 for cGMP hydrolysis by PDE5 versus PDE11. Meanwhile, 6R,12aR-6-(2,4-dichlorophenyl)-2-ethyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4dione 45 demonstrated strong potency for inhibition of PDE11 with an IC(50) value of 11 nM, representing the most potent PDE11 inhibitor thus far reported. Docking experiments differentiated between active and inactive analogues and revealing the conformational, steric, and lipophilic necessities for potent PDE5 inhibition. Many derivatives, including potent PDE5 inhibitors, were able to inhibit the growth of the MDA-MB-231 breast tumor cell line with low micromolar potency.
    Journal of Medicinal Chemistry 01/2011; 54(2):495-509. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Starting from a previously reported lead compound GR30040X (a hydantoin tetrahydro-β-carboline derivative with a 4- pyridinyl ring at C- 5), a series of structurally related tetrahydro-β-carboline derivatives were prepared. The tetrahydro-β-carboline skeleton was fused either to a hydantoin or to a piperazindione ring, the pendant aryl group attached to C-5 or C-6 was changed to a 3, 4-dimethoxyphenyl or a 3-pyridinyl ring; different N-substituents on the terminal ring were introduced, a straight chain ethyl group, a branched tert. butyl and P-chlorophenyl group rather than n-butyl group of the lead compound. All four possible diastereomers of target tetrahydro-β-carboline derivatives were prepared, separated by column chromatography and the significance of these stereochemical manipulations were studied. Synthesized compounds were evaluated for their inhibitory effect versus PDE5. Seven hits were obtained with appreciable inhibitory activity versus PDE5 with IC₅₀s 0.14 - 4.99 µM.
    Medicinal chemistry (Shāriqah (United Arab Emirates)) 11/2010; 6(6):374-87. · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme-specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin-mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs.
    Cancer Prevention Research 09/2010; 3(10):1303-13. · 4.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drugs including sulindac are well documented to be highly effective for cancer chemoprevention. However, their cyclooxygenase (COX)-inhibitory activities cause severe gastrointestinal, renal, and cardiovascular toxicities, limiting their chronic use. Recent studies suggest that COX-independent mechanisms may be responsible for the chemopreventive benefits of nonsteroidal anti-inflammatory drugs and support the potential for the development of a novel generation of sulindac derivatives lacking COX inhibition for cancer chemoprevention. A prototypic sulindac derivative with a N,N-dimethylammonium substitution called sulindac sulfide amide (SSA) was recently identified to be devoid of COX-inhibitory activity yet displays much more potent tumor cell growth-inhibitory activity in vitro compared with sulindac sulfide. In this study, we investigated the androgen receptor (AR) signaling pathway as a potential target for its COX-independent antineoplastic mechanism and evaluated its chemopreventive efficacy against prostate carcinogenesis using the transgenic adenocarcinoma of mouse prostate model. The results showed that SSA significantly suppressed the growth of human and mouse prostate cancer cells expressing AR in strong association with G(1) arrest, and decreased AR level and AR-dependent transactivation. Dietary SSA consumption dramatically attenuated prostatic growth and suppressed AR-dependent glandular epithelial lesion progression through repressing cell proliferation in the transgenic adenocarcinoma of mouse prostate mice, whereas it did not significantly affect neuroendocrine carcinoma growth. Overall, the results suggest that SSA may be a chemopreventive candidate against prostate glandular epithelial carcinogenesis.
    Cancer Prevention Research 07/2010; 3(7):885-95. · 4.89 Impact Factor

Publication Stats

175 Citations
92.36 Total Impact Points

Institutions

  • 2013–2014
    • University of South Alabama
      Mobile, Alabama, United States
  • 2009–2013
    • The German University in Cairo
      • Department of Pharmaceutical Chemistry
      Cairo, Muhafazat al Qahirah, Egypt
    • University of Alabama at Birmingham
      • • Department of Biochemistry and Molecular Genetics
      • • Department of Pharmacology and Toxicology
      Birmingham, AL, United States
  • 2010–2011
    • Southern Research Institute
      Birmingham, Alabama, United States