Linda X H Yuan

University of Texas MD Anderson Cancer Center, Houston, Texas, United States

Are you Linda X H Yuan?

Claim your profile

Publications (6)44.17 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the role of PEA-15 in breast cancer. A reverse-phase protein array was used to measure PEA-15 expression levels in 320 human breast cancers; these levels were correlated with clinical and tumor characteristics. PEA-15 was overexpressed by an adenovirus vector or by stably expressing PEA-15 in different breast cancer cell lines. The effects on breast cancer cell survival and on the downstream apoptotic signaling pathway were measured in terms of cell proliferation (trypan blue for cell viability, bromodeoxyuridine incorporation for DNA synthesis), anchorage-independent growth (soft agar colony formation), and apoptosis (fluorescence-activated cell sorter analysis). The preclinical efficacy of Ad.PEA-15 given intratumorally was evaluated in nude mice bearing tumors from s.c. implanted human MDA-MB-468 triple-negative breast cancer cells. In human breast cancers, low levels of PEA-15 expression correlated with high nuclear grade (P < 0.0001) and with negative hormone receptor status (P = 0.0004). Overexpression of PEA-15 in breast cancer cells resulted in growth inhibition, reduction in DNA synthesis, and onset of caspase-8-dependent apoptosis. In athymic nude mice bearing MDA-MB-468 xenografts, tumor volumes were significantly smaller in mice treated intratumorally with Ad.PEA-15 than in control mice (P < 0.0001). Tumors from mice treated with Ad.PEA-15 had increased levels of activated (phosphorylated) extracellular signal-regulated kinase and reduced levels of Ki-67 compared with tumors from nontreated or control-adenovirus-treated mice. PEA-15 has therapeutic potential in breast cancer. Further preclinical and clinical exploration of PEA-15 as a druggable target is warranted.
    Clinical Cancer Research 03/2010; 16(6):1802-11. · 7.84 Impact Factor
  • Rita Nahta, Linda X H Yuan, Yi Du, Francisco J Esteva
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of breast cancer patients who achieve an initial therapeutic response to the HER2-targeted antibody trastuzumab will show disease progression within 1 year. Thus, the identification of novel agents that effectively inhibit survival of cancer cells that have progressed on trastuzumab is critical. In the current study, we show that the dual epidermal growth factor receptor (EGFR)/human EGFR-2 (HER2) kinase inhibitor lapatinib induces apoptosis in trastuzumab-resistant cells derived from the HER2-overexpressing SKBR3 breast cancer line. Lapatinib inhibited EGFR and HER2 signaling in resistant cells, blocking activation of downstream Akt, mitogen-activated protein kinase [corrected] Importantly, lapatinib also inhibited insulin-like growth factor I (IGF-I) signaling and growth-promoting effects in parental and resistant cells, and the cytotoxic effects of lapatinib were further enhanced by the IGF-I receptor-blocking antibody alphaIR3. As increased IGF-I receptor signaling has been implicated in trastuzumab resistance, our data strongly support further study of lapatinib as a potential therapeutic in breast cancers that have progressed on trastuzumab.
    Molecular Cancer Therapeutics 03/2007; 6(2):667-74. · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The antiapoptotic protein Bcl-2 is overexpressed in a majority of breast cancers, and is associated with a diminished apoptotic response and resistance to various antitumor agents. Bcl-2 inhibition is currently being explored as a possible strategy for sensitizing breast cancer cells to standard chemotherapeutic agents. Antisense Bcl-2 oligonucleotides represent one method for blocking the antiapoptotic effects of Bcl-2. In this study, we show that antisense Bcl-2 efficiently blocks Bcl-2 expression, resulting in the apoptosis of breast cancer cells. Antisense Bcl-2-mediated cytotoxicity was associated with the induction of the B cell translocation gene 1 (BTG1). Importantly, knockdown of BTG1 reduced antisense Bcl-2-mediated cytotoxicity in breast cancer cells. Furthermore, BTG1 expression seems to be negatively regulated by Bcl-2, and exogenous expression of BTG1 induced apoptosis. These results suggest that BTG1 is a Bcl-2-regulated mediator of apoptosis in breast cancer cells, and that its induction contributes to antisense Bcl-2-mediated cytotoxic effects.
    Molecular Cancer Therapeutics 07/2006; 5(6):1593-601. · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of breast cancer patients who achieve an initial therapeutic response to the human epidermal growth factor receptor 2 (HER-2)-targeted antibody trastuzumab will show disease progression within 1 year. We previously reported the characterization of SKBR3-derived trastuzumab-resistant pools. In the current study, we show that HER-2 interacts with insulin-like growth factor-I receptor (IGF-IR) uniquely in these resistant cells and not in the parental trastuzumab-sensitive cells. The occurrence of cross talk between IGF-IR and HER-2 exclusively in resistant cells is evidenced by the IGF-I stimulation resulting in increased phosphorylation of HER-2 in resistant cells, but not in parental cells, and by the inhibition of IGF-IR tyrosine kinase activity leading to decreased HER-2 phosphorylation only in resistant cells. In addition, inhibition of IGF-IR tyrosine kinase activity by I-OMe-AG538 increased sensitivity of resistant cells to trastuzumab. HER-2/IGF-IR interaction was disrupted on exposure of resistant cells to the anti-IGF-IR antibody alpha-IR3 and, to a lesser extent, when exposed to the anti-HER-2 antibody pertuzumab. Heterodimer disruption by alpha-IR3 dramatically restored sensitivity to trastuzumab and resistant cells showed a slightly increased sensitivity to pertuzumab versus parental cells. Neither alpha-IR3 nor pertuzumab decreased HER-2 phosphorylation, suggesting that additional sources of phosphorylation other than IGF-IR exist when HER-2 and IGF-IR are not physically bound. Our data support a unique interaction between HER-2 and IGF-IR in trastuzumab-resistant cells such that cross talk occurs between IGF-IR and HER-2. These data suggest that the IGF-IR/HER-2 heterodimer contributes to trastuzumab resistance and justify the need for further studies examining this complex as a potential therapeutic target in breast cancers that have progressed while on trastuzumab.
    Cancer Research 01/2006; 65(23):11118-28. · 8.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We are currently conducting clinical trials of E1A gene therapy for patients with ovarian cancer. The adenovirus type 5 E1A gene suppresses growth of ovarian cancer cells that overexpress HER-2/neu (HER2) and growth of some--but not all--that express low HER2. In HER2-overexpressing cells, suppression by E1A is predominantly by down-regulation of HER2, but the mechanism in low HER2-expressing cells is not fully understood. The adenoviral E1B protein has sequential and functional homology to Bcl-2 and prolongs the viability of adenovirus host cells by inhibiting E1A-induced apoptosis. Bcl-2 is overexpressed in ovarian cancer and participates in chemoresistance; we hypothesized that Bcl-2 inhibits E1A-induced apoptosis leading to resistance to E1A gene therapy. E1A suppressed colony formation of ovarian cancer cells that express low levels of Bcl-2 and HER2 (OVCAR-3 and OVCA 433), but enhanced colony formation in low HER2-, high Bcl-2-expressing ovarian cancer cells (2774 and HEY). Treating 2774 or HEY cells with antisense oligonucleotide Bcl-2 (Bcl-2-ASO) did not reduce cell viability. E1A combined with Bcl-2-ASO led to significant decreases in cell viability resulting from increased apoptosis relative to cells treated with E1A alone (P < 0.05). The increase in apoptosis was partly due to cytochrome c release and subsequently caspase-9 activation by Bcl-2-ASO. Finally, in an ovarian cancer xenograft model, treatment with Bcl-2-ASO did not prolong survival, but E1A plus Bcl-2-ASO did (P < 0.001). In conclusion, ovarian tumors overexpressing Bcl-2 may not respond well to E1A gene therapy, but treatment with a combination of E1A and Bcl-2-ASO may overcome this resistance.
    Cancer Research 10/2005; 65(18):8406-13. · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose is to evaluate expression levels of Jun activation domain-binding protein 1 (JAB1) in breast cancer tissue and adjacent normal tissue, to determine whether JAB1 expression is associated with p27(Kip1) expression in invasive breast carcinomas, and to evaluate the prognostic significance of JAB1 and p27(Kip1) in node-negative breast cancer. JAB1 levels were measured in 10 matched pairs of invasive breast tumor tissue and adjacent normal tissue using Western blot analysis. We also investigated the immunoreactivity of JAB1 and p27(Kip1) levels in paraffin-embedded tissue specimens from 220 patients with node-negative breast cancer who had not received adjuvant systemic therapy. The median follow-up was 15 years. JAB1 was expressed at higher levels in invasive tumors than in adjacent normal tissue (P = 0.01). JAB1 overexpression was observed in 57% of invasive breast cancers. Low levels of p27(Kip1) were noted in 70% of the tumor specimens. We found an inverse correlation between JAB1 and p27(Kip1) expression levels (P = 0.01). JAB1 overexpression was associated with patient age of at least 50 years (P = 0.03) and tumor size of </=2 cm (P = 0.01). Elevated levels of p27(Kip1) were associated with low nuclear grade (P = 0.01). At 5 years of follow-up, neither JAB1 nor p27(Kip1) expression was related to disease-free survival. These data indicate that JAB1 is commonly overexpressed in invasive breast carcinomas. JAB1 overexpression is associated with low levels of p27(Kip1) in node-negative breast cancer. In this study, JAB1 and p27(Kip1) were not independent prognostic factors.
    Clinical Cancer Research 11/2003; 9(15):5652-9. · 7.84 Impact Factor