N Welsh

Uppsala University, Uppsala, Uppsala, Sweden

Are you N Welsh?

Claim your profile

Publications (157)637.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. It has been proposed that the histamine 1-receptor (H1-receptor) not only promotes allergic reactions, but also modulates innate immunity and autoimmune reactions. In line with this, we have recently reported that the H1-receptor antagonist cetirizine partially counteracts cytokine-induced beta-cell signaling and destruction. Therefore, the aim of this study was to determine whether cetirizine affects diabetes in NOD mice, a model for human type 1 diabetes, and glucose intolerance in high-fat diet C57BL/6 mice, a model for human glucose intolerance.Methods. Female NOD mice were treated with cetirizine in the drinking water (25 mg/kg body weight) from 9 until 30 weeks of age during which precipitation of diabetes was followed. Male C57BL/6 mice were given a high-fat diet from 5 weeks of age. When the mice were 12 weeks of age cetirizine was given for 2 weeks in the drinking water. The effects of cetirizine were analyzed by blood glucose determinations, glucose tolerance tests, and insulin sensitivity tests.Results. Cetirizine did not affect diabetes development in NOD mice. On the other hand, cetirizine treatment for 1 week protected against high-fat diet-induced hyperglycemia. The glucose tolerance after 2 weeks of cetirizine treatment was improved in high-fat diet mice. We observed no effect of cetirizine on the insulin sensitivity of high-fat diet mice.Conclusion. Our results suggest a protective effect of cetirizine against high-fat diet-induced beta-cell dysfunction, but not against autoimmune beta-cell destruction.
    Upsala Journal of Medical Sciences. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: LRP1 is an endocytic and multifunctional type I cell surface membrane protein, which is known to be phosphorylated by the activated PDGF receptor (PDGFR). The tyrosine kinase inhibitor imatinib, which inhibits PDGFR and c-Abl, and which has previously been reported to counteract beta-cell death and diabetes, has been suggested to ameliorate atherosclerosis by inhibiting PDGFR-induced LRP1 phosphorylation. The aim of this investigation was to study LRP1 function in beta-cells and to what extent imatinib modulates LRP1 activity. LRP1 and c-Abl gene knockdown was performed by RNAi using rat INS-1 832/13 and human EndoC1-bH1 cells. LRP1 was also antagonized by treatment with the antagonist LRPAP1. We used PDGF-BB, a PDGFR agonist and ApoE, an LRP1 agonist, to stimulate the activities of PDGFR and LRP1, respectively. Knockdown or inhibition of LRP1 resulted in increased H2O2- or cytokine-induced cell death and glucose-induced insulin release was lowered in LRP1 silenced cells. These results indicate that LRP1 function is necessary for beta-cell function and that LRP1 is adversely affected by challenges to beta-cell health. PDGF-BB, or the combination of PDGF-BB + ApoE, induced phosphorylation of ERK, Akt and LRP1. LRP1 silencing blocked this event. Imatinib blocked phosphorylation of LRP1 by PDGFR activation, but induced phosphorylation of ERK. LRP1 silencing blocked imatinib-induced phosphorylation of ERK. Sunitinib also blocked LRP1 phosphorylation in response to PDGF-BB, and induced phosphorylation of ERK, but this latter event was not affected by LRP1 knockdown. siRNA-mediated knockdown of the imatinib target c-Abl resulted in an increased ERK phosphorylation at basal conditions, with no further increase in response to imatinib. Imatinib-induced cell survival of tunicamycin-treated cells was partially mediated by ERK activation. We conclude that imatinib promotes LRP1-dependent ERK activation, possibly via inhibition of c-Abl, and that this could contribute to the pro-survival effects of imatinib on beta-cells.
    Clinical science (London, England : 1979). 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been proposed that the histamine 1 (H1) receptor not only promotes allergic reactions but also modulates autoimmune diseases, such as type 1 diabetes. In line with this, it has recently been reported that the H1-receptor antagonist cetirizine can counteract the activation of signals/factors pertinent to the pathogenesis of type 1 diabetes and cytokine-induced β-cell destruction. Therefore, the overall aim of this study was to determine whether H1-receptor antagonists affect cytokine-induced β-cell death and signaling in vitro. The insulin-producing cell line β-TC6 was exposed to the proinflammatory cytokines interleukin 1β interferon γ, or hydrogen peroxide. The H1-receptor antagonists desloratadine and cetirizine were added to the cell cultures and cell viability; macrophage inhibitory factor levels, c-Jun N-terminal kinase phosphorylation, c-Jun expression, and β-catenin levels were analyzed by flow cytometry, real-time polymerase chain reaction, and immunoblotting. Cetirizine protected partially against both cytokine- and hydrogen peroxide-induced cell death. This effect was paralleled by an inhibition of cytokine-induced c-Jun N-terminal kinase phosphorylation, c-Jun induction, and a restoration of macrophage inhibitory factor contents. Cetirizine also increased the β-TC6 cell contents of β-catenin at basal conditions. Our results indicate a protective effect of a specific H1-receptor antagonist.
    Pancreas 05/2014; 43(4):624-9. · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes (T1D) is an autoimmune disease where local release of cytokines such as IL-1β and IFN-γ contribute to β-cell apoptosis. To identify relevant genes regulating this process we performed a meta-analysis of 8 datasets of β-cell gene expression after exposure to IL-1β and IFN-γ. Two of these datasets are novel and contain time-series expressions in human islet cells and rat INS-1E cells. Genes were ranked according to their differential expression within and after 24 hours from exposure, and characterized by function and prior knowledge in the literature. A regulatory network was then inferred from the human time expression datasets, using a time-series extension of a network inference method. The two most differentially expressed genes previously unknown in T1D literature (RIPK2 and ELF3) were found to modulate cytokine-induced apoptosis. The inferred regulatory network is thus supported by the experimental validation, providing a proof-of-concept for the proposed statistical inference approach.
    Genomics 01/2014; · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS/HYPOTHESIS: It is not clear how small tyrosine kinase inhibitors, such as imatinib mesilate, protect against diabetes and beta cell death. The aim of this study was to determine whether imatinib, as compared with the non-cAbl-inhibitor sunitinib, affects pro-survival signalling events in the phosphatidylinositol 3-kinase (PI3K) pathway. METHODS: Human EndoC-βH1 cells, murine beta TC-6 cells and human pancreatic islets were used for immunoblot analysis of insulin receptor substrate (IRS)-1, Akt and extracellular signal-regulated kinase (ERK) phosphorylation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] plasma membrane concentrations were assessed in EndoC-βH1 and MIN6 cells using evanescent wave microscopy. Src homology 2-containing inositol 5'-phosphatase 2 (SHIP2) tyrosine phosphorylation and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) serine phosphorylation, as well as c-Abl co-localisation with SHIP2, were studied in HEK293 and EndoC-βH1 cells by immunoprecipitation and immunoblot analysis. Gene expression was assessed using RT-PCR. Cell viability was measured using vital staining. RESULTS: Imatinib stimulated ERK(thr202/tyr204) phosphorylation in a c-Abl-dependent manner. Imatinib, but not sunitinib, also stimulated IRS-1(tyr612), Akt(ser473) and Akt(thr308) phosphorylation. This effect was paralleled by oscillatory bursts in plasma membrane PI(3,4,5)P3 levels. Wortmannin induced a decrease in PI(3,4,5)P3 levels, which was slower in imatinib-treated cells than in control cells, indicating an effect on PI(3,4,5)P3-degrading enzymes. In line with this, imatinib decreased the phosphorylation of SHIP2 but not of PTEN. c-Abl co-immunoprecipitated with SHIP2 and its binding to SHIP2 was largely reduced by imatinib but not by sunitinib. Imatinib increased total β-catenin levels and cell viability, whereas sunitinib exerted negative effects on cell viability. CONCLUSIONS/INTERPRETATION: Imatinib inhibition of c-Abl in beta cells decreases SHIP2 activity, which results in enhanced signalling downstream of PI3 kinase.
    Diabetologia 03/2013; · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs) together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry), nitrite production (Griess reagent), protein localization (immunofluorescence) and protein phosphorylation (flow cytometry). We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i) augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii) NCSC-derived laminin production; (iii) decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv) decreased beta-TC6 cell phosphorylation of ERK(T202/Y204), FAK(Y397) and FAK(Y576). Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta-cell survival even though ERK and FAK signaling are suppressed. It may be that future strategies to improve islet transplantation outcome may benefit from attempts to increase beta-cell cadherin junctions to neighboring cells.
    PLoS ONE 01/2013; 8(4):e61828. · 3.53 Impact Factor
  • Nils Welsh
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The small tyrosine kinase inhibitor Imatinib Mesylate (Gleevec) protects against diabetes, but it is not known how. Areas covered: It has been suggested that islet amyloid and fibrotic deposits promote beta-cell failure and death, leading to Type-2 diabetes. As Imatinib is known to possess anti-fibrotic/amyloid properties, in for example systemic sclerosis and mouse models for Alzheimer's disease, the present review will discuss the possibility that Imatinib acts, at least in part, by ameliorating islet hyalinization and its consequences in the pathogenesis of Type-2 diabetes. Expert opinion: A better understanding of how Imatinib counteracts Type-2 diabetes will possibly help to clarify the pathogenic role of islet amyloid and fibrosis, and hopefully lead to improved treatment of the disease.
    Expert Opinion on Investigational Drugs 10/2012; 21(11). · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of the C/EBP homologous protein (CHOP) is considered a key event for endoplasmic reticulum (ER) stress-mediated apoptosis. Type 1 diabetes (T1D) is characterized by an autoimmune destruction of the pancreatic β-cells. Pro-inflammatory cytokines are early mediators of β-cell death in T1D. Cytokines induce ER stress and CHOP overexpression in β-cells, but the role for CHOP overexpression in cytokine-induced β-cell apoptosis remains controversial. We presently observed that CHOP knockdown (KD) prevents cytokine-mediated degradation of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1), thereby decreasing the cleavage of executioner caspases 9 and 3, and apoptosis. Nuclear factor-κB (NF-κB) is a crucial transcription factor regulating β-cell apoptosis and inflammation. CHOP KD resulted in reduced cytokine-induced NF-κB activity and expression of key NF-κB target genes involved in apoptosis and inflammation, including iNOS, FAS, IRF-7, IL-15, CCL5 and CXCL10. This was due to decreased IκB degradation and p65 translocation to the nucleus. The present data suggest that CHOP has a dual role in promoting β-cell death: (1) CHOP directly contributes to cytokine-induced β-cell apoptosis by promoting cytokine-induced mitochondrial pathways of apoptosis; and (2) by supporting the NF-κB activation and subsequent cytokine/chemokine expression, CHOP may contribute to apoptosis and the chemo attraction of mononuclear cells to the islets during insulitis.
    Cell death and differentiation 06/2012; 19(11):1836-46. · 8.24 Impact Factor
  • Pancreas 04/2012; 41(3):490-2. · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies of insulin producing β-cells have reported conflicting responses to NF-κB activation, encompassing both pro- and anti-apoptotic effects, possibly reflecting the use of β-cells from different species. Therefore, the aim of this study was to compare the temporal activation of NF-κB in rat and human insulin producing cells and relate this to the dynamics of cell death, STAT-1 activation and the production of nitric oxide (NO). Rat RIN5AH and human islet cells were exposed to the cytokines IL-1β and IFN-γ and the NOS inhibitor aminoguanidine. Cell death, NO production, IκBα phosphorylation, p65 methylation, STAT-1 phosphorylation and cIAP-2 levels were analyzed at different time-points. Cytokine-induced RIN5AH cell death occurred on day 1, and this was paralleled by NF-κB activation, STAT-1 phosphorylation and production of NO. On the other hand, the human islet cells instead died by an NO-independent mechanism on day 3 and 5. This later occurring cell death was associated with a gradual decrease in IκBα phosphorylation and p65 methylation, and a lowered expression of the NF-κB target genes IκBα and cIAP-2. STAT-1 phosphorylation was persistently high during the entire cytokine exposure period in human islet cells. The results favor a pro-survival role of NF-κB and a pro-apoptotic role of STAT-1 in human islet cells. Thus, rodent insulin producing cells may not be suitable as models for human β-cells in the context of cytokine-induced damage.
    Biochemical and Biophysical Research Communications 02/2012; 418(4):845-50. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate whether cap-independent insulin mRNA translation occurs in human pancreatic islets at basal conditions, during stimulation at a high glucose concentration and at conditions of nitrosative stress. We also aimed at correlating cap-independent insulin mRNA translation with binding of the IRES trans-acting factor polypyrimidine tract binding protein (PTB) to the 5'-UTR of insulin mRNA. For this purpose, human islets were incubated for 2h in the presence of low (1.67 mM) or high glucose (16.7 mM). Nitrosative stress was induced by addition of 1 mM DETA/NO and cap-dependent mRNA translation was inhibited with hippuristanol. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. PTB affinity to insulin mRNA 5'-UTR was assessed by a magnetic micro bead pull-down procedure. We observed that in the presence of 1.67 mM glucose, approximately 70% of the insulin mRNA translation was inhibited by hippuristanol. Corresponding value from islets incubated at 16.7 mM glucose was 93%. DETA/NO treatment significantly decreased the translation of insulin by 85% in high glucose incubated islets, and by 50% at a low glucose concentration. The lowered insulin biosynthesis rates of DETA/NO-exposed islets were further suppressed by hippuristanol with 55% at 16.7 mM glucose but not at 1.67 mM glucose. Thus, hippuristanol-induced inhibition of insulin biosynthesis was less pronounced in DETA/NO-treated islets as compared to control islets. We observed also that PTB bound specifically to the insulin mRNA 5'-UTR in vitro, and that this binding corresponded well with rates of cap-independent insulin biosynthesis at the different conditions. In conclusion, our studies show that insulin biosynthesis is mainly cap-dependent at a high glucose concentration, but that the cap-independent biosynthesis of insulin can constitute as much as 40-100% of all insulin biosynthesis during conditions of nitrosative stress. These data suggest that the pancreatic β-cell is able to uphold basal insulin synthesis at conditions of starvation and stress via a cap- and eIF4A-independent mechanism, possibly mediated by the binding of PTB to the 5'-UTR of the human insulin mRNA.
    Biochemical and Biophysical Research Communications 08/2011; 412(4):693-8. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of thrombospondin (TSP)-1 in pancreatic islets has been shown to cause islet hyperplasia. This study tested the hypothesis that endothelial-derived TSP-1 is important for β-cell function. Islet function was evaluated both in vivo and in vitro. Messenger RNA and protein expression were measured by real-time PCR and Western blot, respectively. The role of endothelial-derived TSP-1 for β-cell function was determined using a transplantation design in which recipient blood vessels either were allowed to grow or not into the transplanted islets. TSP-1-deficient mice were glucose intolerant, despite having an increased β-cell mass. Moreover, their islets had decreased glucose-stimulated insulin release, (pro)insulin biosynthesis, and glucose oxidation rate, as well as increased expression of uncoupling protein-2 and lactate dehydrogenase-A when compared with control islets. Almost all TSP-1 in normal islets were found to be derived from the endothelium. Transplantation of free and encapsulated neonatal wild-type and TSP-1-deficient islets was performed in order to selectively reconstitute with TSP-1-positive or -negative blood vessels in the islets and supported that the β-cell defects occurring in TSP-1-deficient islets reflected postnatal loss of the glycoprotein in the islet endothelial cells. Treatment of neonatal TSP-1-deficient mice with the transforming growth factor (TGF)β-1-activating sequence of TSP-1 showed that reconstitution of TGFβ-1 activation prevented the development of decreased glucose tolerance in these mice. Thus, endothelial-derived TSP-1 activates islet TGFβ-1 of importance for β-cells. Our study indicates a novel role for endothelial cells as functional paracrine support for pancreatic β-cells.
    Diabetes 05/2011; 60(7):1946-54. · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imatinib Mesylate (Gleevec) is a drug that potently counteracts diabetes both in humans and in animal models for human diabetes. We have previously reported that this compound in human pancreatic islets stimulates NF-κB signaling and islet cell survival. The aim of this study was to investigate control of NF-κB post-translational modifications exerted by Imatinib and whether any such effects are associated with altered islet gene expression and chemokine production in vitro. Human islets were either left untreated or treated with Imatinib for different timepoints. IκB-α and NF-κB p65 phosphorylation and methylation were assessed by immunoblot analysis. Islet gene expression was assessed using a commercial Pathway Finder microarray kit and RT-PCR. Islet chemokine production was determined by flow cytometric bead array analysis. Human islet IκB-α and Ser276-p65 phosphorylation were increased by a 20 minute Imatinib exposure. Methylation of p65 at position Lys221 was increased after 60 min of Imatinib exposure and persisted for 3 hours. Microarray analysis of islets exposed to Imatinib for 4 hours revealed increased expression of the inflammatory genes IL-4R, TCF5, DR5, I-TRAF, I-CAM, HSP27 and IL-8. The islet release of IL-8 was augmented in islets cultured over night in the presence of Imatinib. Following 30 hours of Imatinib exposure, the cytokine-induced IκB-α and STAT1 phosphorylation was abolished and diminished, respectively. The cytokine-induced release of the chemokines MIG and IP10 was lower in islets exposed to Imatinib for 30 hours. Imatinib by itself promotes a modest activation of NF-κB. However, a prolonged exposure of human islets to Imatinib is associated with a dampened response to cytokines. It is possible that Imatinib induces NF-κB preconditioning of islet cells leading to lowered cytokine sensitivity and a mitigated islet inflammation.
    PLoS ONE 01/2011; 6(9):e24831. · 3.53 Impact Factor
  • Dariush Mokhtari, Nils Welsh
    [Show abstract] [Hide abstract]
    ABSTRACT: Altered tyrosine kinase signalling has been implicated in several diseases, paving the way for the development of small-molecule TKIs (tyrosine kinase inhibitors). TKIs such as imatinib, sunitinib and dasatinib are clinically used for treating chronic myeloid leukaemia, gastrointestinal stromal tumours and other malignancies. In addition to their use as anti-cancer agents, increasing evidence points towards an anti-diabetic effect of these TKIs. Imatinib and other TKIs counteract diabetes not only in non-obese diabetic mice, but also in streptozotocin diabetic mice, db/db mice, high-fat-treated rats and humans with T2D (Type 2 diabetes). Although the mechanisms of protection need to be investigated further, the effects of imatinib and other TKIs in human T2D and the rapidly growing findings from animal models of T1D (Type 1 diabetes) and T2D are encouraging and give hope to improved treatment of human diabetes. In the present article, we review the anti-diabetic effects of TKIs which appear to involve both protection against beta-cell death and improved insulin sensitivity. Considering the relatively mild side effects of TKIs, we hypothesize that TKIs could be used to treat new-onset T1D, prevent T1D in individuals at high risk of developing the disease, treat the late stages of T2D and improve the outcome of islet transplantation.
    Clinical Science 02/2010; 118(4):241-7. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. Human islets were cultured for 24 hours in the presence of low (5.6 mM) or high glucose (20 mM). Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism contributes to hyperglycemia-induced beta-cell dysfunction.
    PLoS ONE 01/2010; 5(5):e10843. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor nuclear factor (NF)-κB is known to modulate rates of apoptosis and may therefore play a role in the increased β-cell death that occurs in type 1 and type 2 diabetes. The aim of the present investigation was to study the expression of NF-κB subunits in human islet cells and whether overexpression of the NF-κB subunit c-Rel affects islet cell survival. We detected expression of p65, Rel-B, p50, p105, p52, and the ribosomal protein S3 (rpS3) in human islet cells. Among these, only p65 and rpS3 were translocated from the cytosolic to the nuclear fraction in response to cytokines. Interestingly, rpS3 participated in p65 binding to the κB-element in gel shift analysis experiments. We observed cytoplasmic c-Rel expression in vivo in 6J mice, and signs of nuclear translocation in β-cells of infiltrated nonobese diabetic islets. Human islet cells were also dispersed by trypsin treatment and transduced with a c-Rel adenoviral vector. This resulted in increased expression of c-Rel and inhibitory factor κB, increased κB-binding activity, and augmented protein levels of Bcl-X(L,) c-IAP2, and heat shock protein 72. c-Rel expression in human islet cells protected against cytokine-induced caspase 3 activation and cell death. c-Rel protected also against streptozotocin- and H(2)O(2)-induced cell death, in both intact rat islets and human islet cells. We conclude that rpS3 participates in NF-κB signaling and that a genetic increase in the activity of the NF-κB subunit c-Rel results in protection against cell death in human islets.
    AJP Endocrinology and Metabolism 09/2009; 297(5):E1067-77. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes may depend on cytokine-induced beta-cell death and therefore the current investigation was performed in order to elucidate this response in Shb-deficient islets. A combination of interleukin-1beta and interferon-gamma caused a diminished beta-cell death response in Shb null islets. Furthermore, the induction of an unfolded protein response (UPR) by adding cyclopiazonic acid did not increase cell death in Shb-deficient islets, despite simultaneous expression of UPR markers. The heat-shock protein Hsp70 was more efficiently induced in Shb knockout islets, providing an explanation for the decreased susceptibility of Shb-deficient islets to cytokines. It is concluded that islets deficient in the Shb protein are less susceptible to cytotoxic conditions, and that this partly depends on their increased ability to induce Hsp70 under such circumstances. Interference with Shb signaling may provide means to improve beta-cell viability under conditions of beta-cell stress.
    Biochemical and Biophysical Research Communications 08/2009; 387(3):553-7. · 2.28 Impact Factor
  • 07/2009; 10(3):241-253.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression patterns provide a detailed view of cellular functions. Comparison of profiles in disease vs normal conditions provides insights into the processes underlying disease progression. However, availability and integration of public gene expression datasets remains a major challenge. The aim of the present study was to explore the transcriptome of pancreatic islets and, based on this information, to prepare a comprehensive and open access inventory of insulin-producing beta cell gene expression, the Beta Cell Gene Atlas (BCGA). We performed Massively Parallel Signature Sequencing (MPSS) analysis of human pancreatic islet samples and microarray analyses of purified rat beta cells, alpha cells and INS-1 cells, and compared the information with available array data in the literature. MPSS analysis detected around 7600 mRNA transcripts, of which around a third were of low abundance. We identified 2000 and 1400 transcripts that are enriched/depleted in beta cells compared to alpha cells and INS-1 cells, respectively. Microarray analysis identified around 200 transcription factors that are differentially expressed in either beta or alpha cells. We reanalyzed publicly available gene expression data and integrated these results with the new data from this study to build the BCGA. The BCGA contains basal (untreated conditions) gene expression level estimates in beta cells as well as in different cell types in human, rat and mouse pancreas. Hierarchical clustering of expression profile estimates classify cell types based on species while beta cells were clustered together. Our gene atlas is a valuable source for detailed information on the gene expression distribution in beta cells and pancreatic islets along with insulin producing cell lines. The BCGA tool, as well as the data and code used to generate the Atlas are available at the T1Dbase website (T1DBase.org).
    BMC Medical Genomics 02/2009; 2:3. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Potassium channel openers (KCOs) decrease insulin secretion from beta-cells. Some KCOs also protect against damage to beta-cell function and type 1 diabetes in animal models. Previously we have found that the KCO NNC 55-0118 counteracted islet cell dysfunction, and this was associated with a lowering of the mitochondrial membrane potential (Deltapsi). Presently we aimed to explore whether inhibition of insulin secretion per se or rather inhibition of mitochondrial function correlates to counteraction of beta-cell suppression. For this we used two novel KCOs (NNC 55-0321 and NNC 55-0462), which at certain concentrations have different actions regarding insulin secretion and the Deltapsi, with NNC 55-0321 being a potent inhibitor of Deltapsi and NNC 55-0462 being a potent inhibitor of insulin secretion. At 10 microM NNC 55-0321, but not with NNC 55-0462, the islet ATP content and ATP/ADP ratio was acutely decreased. This was accompanied by a complete protection against streptozotocin-induced suppression of islet insulin secretion using the former KCO. In cardiac research KCOs have been used to induce an ischemic preconditioning (IPC) response. In line with an IPC-like mechanism we found that NNC 55-0321 induced an initial free oxygen radical formation, PKC-epsilon isoform activation and a subsequent phosphorylation of the survival promoting factor Akt. Thus, KCOs may elicit mitochondrial events that resemble classical IPC seen in cardiomyocytes, and this could explain the enhanced islet cell function observed. KCOs with this property may be particularly interesting compounds to study as a rescue therapy during acute episodes of beta-cell suppression/destruction.
    Biochemical pharmacology 10/2008; 76(12):1748-56. · 4.25 Impact Factor

Publication Stats

4k Citations
637.77 Total Impact Points


  • 1985–2014
    • Uppsala University
      • • Department of Medical Cell Biology
      • • Department of Medical Sciences
      Uppsala, Uppsala, Sweden
  • 2006
    • Université Libre de Bruxelles
      • Laboratory of Experimental Medicine (LABOMEDEX)
      Brussels, BRU, Belgium
  • 1990–2000
    • Free University of Brussels
      • • Department of Metabolism and Endocrinology
      • • Faculty of Engineering
      Bruxelles, Brussels Capital Region, Belgium
  • 1996
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
  • 1994
    • Uppsala University Hospital
      Uppsala, Uppsala, Sweden
  • 1993
    • Karolinska University Hospital
      • Endocrinology Unit
      Stockholm, Stockholm, Sweden
  • 1991
    • National Eye Institute
      Maryland, United States
  • 1989
    • University of Gothenburg
      • Medical Biophysics Unit
      Göteborg, Vaestra Goetaland, Sweden