Soren Impey

Washington State University, Pullman, Washington, United States

Are you Soren Impey?

Claim your profile

Publications (68)582.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Androgens are widely used for treating Fanconi anemia (FA) and other human bone marrow failure syndromes, but their mode of action remains incompletely understood. Aged Fancd2(-/-) mice were used to assess the therapeutic efficacy of oxymetholone (OXM) and its mechanism of action. Eighteen-month-old Fancd2(-/-) mice recapitulated key human FA phenotypes, including reduced bone marrow cellularity, red cell macrocytosis, and peripheral pancytopenia. As in humans, chronic OXM treatment significantly improved these hematological parameters and stimulated the proliferation of hematopoietic stem and progenitor cells. RNA-Seq analysis implicated downregulation of osteopontin as an important potential mechanism for the drug's action. Consistent with the increased stem cell proliferation, competitive repopulation assays demonstrated that chronic OXM therapy eventually resulted in stem cell exhaustion. These results expand our knowledge of the regulation of hematopoietic stem cell proliferation and have direct clinical implications for the treatment of bone marrow failure. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Stem cell reports. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Status epilepticus (SE) is a life-threatening condition that can give rise to a number of neurological disorders, including learning deficits, depression, and epilepsy. Many of the effects of SE appear to be mediated by alterations in gene expression. To gain deeper insight into how SE affects the transcriptome, we employed the pilocarpine SE model in mice and Illumina-based high-throughput sequencing to characterize alterations in gene expression from the induction of SE, to the development of spontaneous seizure activity. While some genes were upregulated over the entire course of the pathological progression, each of the three sequenced time points (12-hour, 10-days and 6-weeks post-SE) had a largely unique transcriptional profile. Hence, genes that regulate synaptic physiology and transcription were most prominently altered at 12-hours post-SE; at 10-days post-SE, marked changes in metabolic and homeostatic gene expression were detected; at 6-weeks, substantial changes in the expression of cell excitability and morphogenesis genes were detected. At the level of cell signaling, KEGG analysis revealed dynamic changes within the MAPK pathways, as well as in CREB-associated gene expression. Notably, the inducible expression of several noncoding transcripts was also detected. These findings offer potential new insights into the cellular events that shape SE-evoked pathology.
    Scientific Reports 11/2014; 4:6930. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptin acts in the hippocampus to enhance cognition, and reduce depression and anxiety. Cognitive and emotional disorders are associated with abnormal hippocampal dendritic spine formation and synaptogenesis. While leptin has been shown to induce synaptogenesis in the hypothalamus, its effects on hippocampal synaptogenesis and the mechanism(s) involved are not well understood. Here we show that leptin receptors (LepRs) are critical for hippocampal dendritic spine formation in vivo since db/db mice lacking the long form of the leptin receptor (LepRb) have reduced spine density on CA1 and CA3 neurons. Leptin promotes the formation of mature spines and functional glutamate synapses on hippocampal pyramidal neurons in both dissociated and slice cultures. These effects are blocked by shRNAs specifically targeting the LepRb and are absent in cultures from db/db mice. Activation of the LepR leads to CREB phosphorylation and initiation of CREB-dependent transcription via the Mek/Erk pathway. Furthermore, both Mek/Erk and CREB activation are required for leptin-induced synaptogenesis. Leptin also increases expression of microRNA-132 (miR132), a well-known CREB target, which is also required for leptin-induced synaptogenesis. Lastly, leptin suppresses the expression of p250GAP, a microRNA-132 target, and this suppression is obligatory for leptin's effects as is the downstream target of p250GAP, Rac1. LepRs appear to be critical in vivo as db/db mice have lowered hippocampal miR132 levels and elevated p250GAP expression. In conclusion, we identify a novel signaling pathway by which leptin increases synaptogenesis through inducing CREB transcription and increasing microRNA-mediated suppression of p250GAP activity, thus removing a known inhibitor of Rac1-stimulated synaptogenesis.
    Molecular Endocrinology 05/2014; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is a deadly disease that is usually diagnosed in the advanced stages when few effective therapies are available. Given the aggressive clinical course of this disease and lack of good treatment options, the development of new therapeutic agents for the treatment of pancreatic cancer is of the upmost importance. Several pathways shown to contribute to pancreatic cancer progression are negatively regulated by the tumor suppressor, protein phosphatase 2A (PP2A). Here, the endogenous inhibitors of PP2A, SET (also known as I2PP2A) and Cancerous Inhibitor of PP2A (CIP2A), were shown to be overexpressed in human pancreatic cancer, contributing to decreased PP2A activity, and overexpression and stabilization of the oncoprotein c-Myc, a key PP2A target. Knockdown of SET or CIP2A increases PP2A activity, increases c-Myc degradation, and decreases the tumorigenic potential of pancreatic cancer cell lines both in vitro and in vivo. Moreover, treatment with a novel SET inhibitor, OP449, pharmacologically recapitulates the phenotypes and significantly reduces proliferation and tumorigenic potential of several pancreatic cancer cell lines, with an accompanying attenuation of cell growth and survival signaling. Furthermore, primary cells from pancreatic cancer patients were sensitive to OP449 treatment, indicating that PP2A regulated pathways are highly relevant to this deadly disease. Implications: The PP2A inhibitors SET and CIP2A are overexpressed in human pancreatic cancer and are important for pancreatic cancer cell growth and transformation; thus, antagonizing SET and/or CIP2A may be an innovative approach for the treatment of human pancreatic cancer.
    Molecular Cancer Research 03/2014; · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.
    Journal of Neuroscience 01/2014; 34(3):717-25. · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Goblet cell metaplasia accompanies common pulmonary disorders that are prone to recurrent viral infections. Mechanisms regulating both goblet cell metaplasia and susceptibility to viral infection associated with chronic lung diseases are incompletely understood. Objectives: We sought to identify the role of the transcription factor FOXA3 in regulation of goblet cell metaplasia and pulmonary innate immunity. Methods: FOXA3 was identified in airways from patients with asthma and COPD. We produced transgenic mice conditionally expressing Foxa3 in airway epithelial cells and developed human bronchial epithelial cells expressing Foxa3. Foxa3 regulated genes were identified by immunostaining, Western blotting, and RNA analysis. Direct binding of FOXA3 to target genes was identified by ChIP-seq correlated with RNA-seq. Measurements and Main Results: FOXA3 was highly expressed in airway goblet cells from patients with asthma and COPD. FOXA3 was induced by either IL-13 or rhinovirus. Foxa3 induced goblet cell metaplasia and enhanced expression of a network of genes mediating mucus production. Paradoxically, FOXA3 inhibited rhinovirus-induced interferon production, IRF-3 phosphorylation and IKKε expression and inhibited viral clearance and expression of genes required for antiviral defenses, including MDA5, RIG-I, TLR3, IRF7/9, and NFκB. Conclusions: FOXA3 induces goblet cell metaplasia in response to infection or TH2 stimulation. Suppression of interferon signaling by FOXA3 provides a plausible mechanism that may serve to limit ongoing TH1 inflammation during the resolution of acute viral infection; however, inhibition of innate immunity by FOXA3 may contribute to susceptibility to viral infections associated with chronic lung disorders accompanied by chronic goblet cell metaplasia.
    American Journal of Respiratory and Critical Care Medicine 01/2014; · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrophin-regulated gene expression is believed to play a key role in long-term changes in synaptic structure and the formation of dendritic spines. Brain-derived neurotrophic factor (BDNF) has been shown to induce increases in dendritic spine formation, and this process is thought to function in part by stimulating CREB-dependent transcriptional changes. To identify CREB-regulated genes linked to BDNF-induced synaptogenesis, we profiled transcriptional occupancy of CREB in hippocampal neurons. Interestingly, de novo motif analysis of hippocampal ChIP-Seq data identified a non-canonical CRE motif (TGGCG) that was enriched at CREB target regions and conferred CREB-responsiveness. Because cytoskeletal remodeling is an essential element of the formation of dendritic spines, within our screens we focused our attention on genes previously identified as inhibitors of RhoA GTPase. Bioinformatic analyses identified dozens of candidate CREB target genes known to regulate synaptic architecture and function. We showed that two of these, the RhoA inhibitors Par6C (Pard6A) and Rnd3 (RhoE), are BDNF-induced CREB-regulated genes. Interestingly, CREB occupied a cluster of non-canonical CRE motifs in the Rnd3 promoter region. Lastly, we show that BDNF-stimulated synaptogenesis requires the expression of Par6C and Rnd3, and that overexpression of either protein is sufficient to increase synaptogenesis. Thus, we propose that BDNF can regulate formation of functional synapses by increasing the expression of the RhoA inhibitors, Par6C and Rnd3. This study shows that genome-wide analyses of CREB target genes can facilitate the discovery of new regulators of synaptogenesis.
    PLoS ONE 06/2013; 8(6):e64658. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Myc oncoprotein is considered a master regulator of gene transcription by virtue of its ability to modulate expression of a large percentage of all genes. However, mechanisms that direct Myc's recruitment to DNA and target gene selection to elicit specific cellular functions have not been well elucidated. Here, we report that the Pin1 prolyl-isomerase enhances recruitment of Serine62-phosphorylated Myc and its co-activators to select promoters during gene activation, followed by promoting Myc's release associated with its degradation. This facilitates Myc's activation of genes involved in cell growth and metabolism, resulting in enhanced pro-proliferative activity, even while controlling Myc levels. In cancer cells with impaired Myc degradation, Pin1 still enhances Myc DNA binding, although it no longer facilitates Myc degradation. Thus, we find that Pin1 and Myc are co-overexpressed in cancer, and this drives a gene expression pattern that we show is enriched in poor outcome breast cancer subtypes. This study provides new insight into mechanisms regulating Myc DNA binding and oncogenic activity, it reveals a novel role for Pin1 in the regulation of transcription factors, and it elucidates a mechanism that can contribute to oncogenic cooperation between Pin1 and Myc.
    Molecular and Cellular Biology 05/2013; · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus is a source of new neurons throughout life. Interestingly, SGZ proliferative capacity is regulated by both physiological and pathophysiological conditions. One outstanding question involves the molecular mechanisms that regulate both basal and inducible adult neurogenesis. Here, we examined the role of the MAPK-regulated kinases, mitogen- and stress-activated kinase (MSK)1 and MSK2. as regulators of dentate gyrus SGZ progenitor cell proliferation and neurogenesis. Under basal conditions, MSK1/2 null mice exhibited significantly reduced progenitor cell proliferation capacity and a corollary reduction in the number of doublecortin (DCX)-positive immature neurons. Strikingly, seizure-induced progenitor proliferation was totally blocked in MSK1/2 null mice. This blunting of cell proliferation in MSK1/2 null mice was partially reversed by forskolin infusion, indicating that the inducible proliferative capacity of the progenitor cell population was intact. Furthermore, in MSK1/2 null mice, DCX-positive immature neurons exhibited reduced neurite arborization. Together, these data reveal a critical role for MSK1/2 as regulators of both basal and activity-dependent progenitor cell proliferation and morphological maturation in the SGZ.
    Journal of Neurochemistry 09/2012; · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the central nervous system, microRNAs have emerged as important effectors of an array of developmental, physiological, and cognitive processes. Along these lines, the CREB-regulated microRNA miR-132 has been shown to influence neuronal maturation via its effects on dendritic arborization and spinogenesis. In the mature nervous system, dysregulation of miR-132 has been suggested to play a role in a number of neurocognitive disorders characterized by aberrant synaptogenesis. However, little is known about the inducible expression and function of miR-132 under normal physiological conditions in vivo. Here, we begin to explore this question within the context of learning and memory. Using in situ hybridization, we show that the presentation of a spatial memory task induced a significant ~1.5-fold increase in miR-132 expression within the CA1, CA3, and GCL excitatory cell layers of the hippocampus. To examine the role of miR-132 in hippocampal-dependent learning and memory, we employ a doxycycline-regulated miR-132 transgenic mouse strain to drive varying levels of transgenic miR-132 expression. These studies revealed that relatively low levels of transgenic miR-132 expression, paralleling the level of expression in the hippocampus following a spatial memory task, significantly enhanced cognitive capacity. In contrast, higher (supra-physiological) levels of miR-132 (>3-fold) inhibited learning. Interestingly, both the impaired cognition and elevated levels of dendritic spines resulting from supra-physiological levels of transgenic miR-132 were reversed by doxycycline suppression of transgene expression. Together, these data indicate that miR-132 functions as a key activity-dependent regulator of cognition, and that miR-132 expression must be maintained within a limited range to ensure normal learning and memory formation.
    Brain Structure and Function 06/2012; · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated by calcium ion (Ca(2+))-dependent activation of Ca(2+)/calmodulin kinase-I (CaMKI), which triggers cAMP response element binding protein (CREB)-dependent Wnt2 transcription. RyRs regulate the spatiotemporal dynamics of intracellular Ca(2+) signals, but whether RyRs promote dendritic growth via modulation of this signaling pathway is not known. We tested the hypothesis that the CaMKI-CREB-Wnt2 signaling pathway couples NDL PCB-enhanced RyR activity to dendritic arborization. Ca(2+) imaging of dissociated cultures of primary rat hippocampal neurons indicated that PCB-95 (2,2',3,5'6-pentachlorobiphenyl; a potent RyR potentiator), enhanced synchronized Ca(2+) oscillations in somata and dendrites that were blocked by ryanodine. As determined by Western blotting and quantitative polymerase chain reaction, PCB-95 also activated CREB and up-regulated Wnt2. Blocking CaMKK, CaMKIα/γ, MEK/ERK, CREB, or Wnt2 prevented PCB-95-induced dendritic growth. Antagonism of γ-aminobutyric acid (GABA) receptors with bicuculline (BIC) phenocopied the dendrite-promoting effects of PCB-95, and pharmacological antagonism or siRNA knockdown of RyR blocked BIC-induced dendritic growth in dissociated and slice cultures of hippocampal neurons. RyR activity contributes to dynamic remodeling of dendritic architecture in response to NDL PCBs via CaMKI-CREB-Wnt2 signaling in rats. Our findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling associated with autism.
    Environmental Health Perspectives 04/2012; 120(7):1003-9. · 7.26 Impact Factor
  • Source
    Molecular and Cellular Neuroscience 02/2012; 49(2):250. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In metazoans, lysosomes are the center for the degradation of macromolecules and play a key role in a variety of cellular processes, such as autophagy, exocytosis and membrane repair. Defects of lysosomal pathways are associated with lysosomal storage disorders and with several late onset neurodegenerative diseases. We recently discovered the CLEAR (Coordinated Lysosomal Expression and Regulation) gene network and its master gene transcription factor EB (TFEB), which regulates lysosomal biogenesis and function. Here, we used a combination of genomic approaches, including ChIP-seq (sequencing of chromatin immunoprecipitate) analysis, profiling of TFEB-mediated transcriptional induction, genome-wide mapping of TFEB target sites and recursive expression meta-analysis of TFEB targets, to identify 471 TFEB direct targets that represent essential components of the CLEAR network. This analysis revealed a comprehensive system regulating the expression, import and activity of lysosomal enzymes that control the degradation of proteins, glycosaminoglycans, sphingolipids and glycogen. Interestingly, the CLEAR network appears to be involved in the regulation of additional lysosome-associated processes, including autophagy, exo- and endocytosis, phagocytosis and immune response. Furthermore, non-lysosomal enzymes involved in the degradation of essential proteins such as hemoglobin and chitin are also part of the CLEAR network. Finally, we identified nine novel lysosomal proteins by using the CLEAR network as a tool for prioritizing candidates. This study provides potential therapeutic targets to modulate cellular clearance in a variety of disease conditions.
    Human Molecular Genetics 07/2011; 20(19):3852-66. · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self-renewal, the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase, KDM5B, is a downstream Nanog target and critical for ESC self-renewal. Although KDM5B is believed to function as a promoter-bound repressor, we find that it paradoxically functions as an activator of a gene network associated with self-renewal. ChIP-Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3, increases cryptic intragenic transcription, and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self-renewal-associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.
    The EMBO Journal 03/2011; 30(8):1473-84. · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells.
    Cancer Research 02/2011; 71(4):1497-505. · 9.28 Impact Factor
  • Gastroenterology 01/2011; 140(5). · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inducible gene expression plays a central role in neuronal plasticity, learning, and memory, and dysfunction of the underlying molecular events can lead to severe neuronal disorders. In addition to coding transcripts (mRNAs), non-coding microRNAs (miRNAs) appear to play a role in these processes. For instance, the CREB-regulated miRNA miR132 has been shown to affect neuronal structure in an activity-dependent manner, yet the details of its physiological effects and the behavioral consequences in vivo remain unclear. To examine these questions, we employed a transgenic mouse strain that expresses miR132 in forebrain neurons. Morphometric analysis of hippocampal neurons revealed that transgenic miR132 triggers a marked increase in dendritic spine density. Additionally, miR132 transgenic mice exhibited a decrease in the expression of MeCP2, a protein implicated in Rett Syndrome and other disorders of mental retardation. Consistent with these findings, miR132 transgenic mice displayed significant deficits in novel object recognition. Together, these data support a role for miR132 as a regulator of neuronal structure and function, and raise the possibility that dysregulation of miR132 could contribute to an array of cognitive disorders.
    PLoS ONE 11/2010; 5(11):e15497. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are a class of small RNA regulators that are involved in numerous cellular processes, including development, proliferation, differentiation, and plasticity. The emerging concept is that microRNAs play a central role in controlling the balance between stem cell self-renewal and fate determination by regulating the expression of stem cell regulators. This review will highlight recent advances in the regulation of neural stem cell self-renewal and neurogenesis by microRNAs. It will cover microRNA functions during the entire process of neurogenesis, from neural stem cell self-renewal and fate determination to neuronal maturation, synaptic formation, and plasticity. The interplay between microRNAs and both cell-intrinsic and -extrinsic stem cell players, including transcription factors, epigenetic regulators, and extrinsic signaling molecules will be discussed. This is a summary of the topics covered in the mini-symposium on microRNA regulation of neural stem cells and neurogenesis in SFN 2010 and is not meant to be a comprehensive review of the subject.
    Journal of Neuroscience 11/2010; 30(45):14931-6. · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrophins are growth factors that are important in neuronal development and survival as well as synapse formation and plasticity. Many of the effects of neurotrophins are mediated by changes in protein expression as a result of altered transcription or translation. To determine whether neurotrophins regulate the production of microRNAs (miRNAs), small RNA species that modulate protein translation or mRNA stability, we used deep sequencing to identify BDNF (brain-derived neurotrophic factor)-induced miRNAs in cultured primary cortical mouse neurons. This revealed that the miR-212/132 cluster contained the miRNAs most responsive to BDNF treatment. This cluster was found to produce four miRNAs: miR-132, miR-132*, miR-212 and miR-212*. Using specific inhibitors, mouse models and promoter analysis we have shown that the regulation of the transcription of the miR-212/132 miRNA cluster and the miRNAs derived from it are regulated by the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, via both MSK (mitogen and stress-activated kinase)-dependent and -independent mechanisms.
    Biochemical Journal 03/2010; 428(2):281-91. · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis. Moreover, miR132 is necessary and sufficient for hippocampal spine formation. Expression of the miR132 target, p250GAP, is inversely correlated with miR132 levels and spinogenesis. Furthermore, knockdown of p250GAP increases spine formation while introduction of a p250GAP mutant unresponsive to miR132 attenuates this activity. Inhibition of miR132 decreases both mEPSC frequency and the number of GluR1-positive spines, while knockdown of p250GAP has the opposite effect. Additionally, we show that the miR132/p250GAP circuit regulates Rac1 activity and spine formation by modulating synapse-specific Kalirin7-Rac1 signaling. These data suggest that neuronal activity regulates spine formation, in part, by increasing miR132 transcription, which in turn activates a Rac1-Pak actin remodeling pathway.
    Molecular and Cellular Neuroscience 10/2009; 43(1):146-56. · 3.73 Impact Factor

Publication Stats

7k Citations
582.57 Total Impact Points


  • 2008–2013
    • Washington State University
      • Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (VCAPP)
      Pullman, Washington, United States
  • 2012
    • Catholic University of Daegu
      Kayō, North Gyeongsang, South Korea
  • 2002–2012
    • The Ohio State University
      • Department of Neuroscience
      Columbus, OH, United States
  • 2001–2012
    • Oregon Health and Science University
      • • Department of Pediatrics
      • • Department of Cell & Developmental Biology
      Portland, Oregon, United States
  • 2005
    • National Institute on Drug Abuse
      • Research Branch Behavioral Neuroscience
      Maryland, United States
  • 2004
    • University of Dundee
      Dundee, Scotland, United Kingdom
  • 2002–2003
    • University of Texas Southwestern Medical Center
      • Department of Psychiatry
      Dallas, Texas, United States
  • 1994–2003
    • University of Washington Seattle
      • Department of Pharmacology
      Seattle, WA, United States