Ashley M Deacon

Stanford University, Palo Alto, California, United States

Are you Ashley M Deacon?

Claim your profile

Publications (188)562.31 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5. The positional specificity of TM0077 was investigated using 4-nitrophenyl-β-D-xylopyranoside monoacetates as substrates in a β-xylosidase-coupled assay. TM0077 hydrolyzes acetate at positions 2, 3, and 4 with equal efficiency. No activity was detected on xylan or acetylated xylan, which implies that TM0077 is an acetyl esterase and not an acetyl xylan esterase as currently annotated. Selenomethionine-substituted and native structures of TM0077 were determined at 2.1 and 2.5 Å resolution, respectively, revealing a classic α/β-hydrolase fold. TM0077 assembles into a doughnut-shaped hexamer with small tunnels on either side leading to an inner cavity, which contains the six catalytic centers. Structures of TM0077 with covalently bound phenylmethylsulfonyl fluoride and paraoxon were determined to 2.4 and 2.1 Å, respectively, and confirmed that both inhibitors bind covalently to the catalytic serine (Ser188). Upon binding of inhibitor, the catalytic serine adopts an altered conformation, as observed in other esterase and lipases, and supports a previously proposed catalytic mechanism in which Ser hydroxyl rotation prevents reversal of the reaction and allows access of a water molecule for completion of the reaction.
    Proteins Structure Function and Bioinformatics 06/2012; 80(6):1545-59. DOI:10.1002/prot.24041 · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence.
    Acta Crystallographica Section D Biological Crystallography 04/2012; 68(Pt 4):391-403. DOI:10.1107/S090744491104978X · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H(149)E(150)XXH(153)+E(212)+Y(205) metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae, with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).
    Journal of bacteriology 03/2012; 194(11):2987-99. DOI:10.1128/JB.00038-12 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg(2+) , was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker-A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N-terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped-down 'active site'. Homology modelling of the N-terminal atypical receiver domain of CpaE indicates that it has a conserved protein-protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.
    Molecular Microbiology 12/2011; 83(4):712-27. DOI:10.1111/j.1365-2958.2011.07954.x · 4.42 Impact Factor
  • Source
    Acta Crystallographica Section A Foundations of Crystallography 08/2011; 67(a1):C658-C659. DOI:10.1107/S0108767311083358 · 2.31 Impact Factor
  • Source
    H. -J. Chiu · A. M. Deacon · I. A. Wilson
    Acta Crystallographica Section A Foundations of Crystallography 08/2011; 67(a1):C299-C299. DOI:10.1107/S0108767311092518 · 2.31 Impact Factor
  • Source
    Acta Crystallographica Section A Foundations of Crystallography 08/2011; 67(a1):C590-C591. DOI:10.1107/S0108767311085060 · 2.31 Impact Factor
  • Acta Crystallographica Section A Foundations of Crystallography 08/2011; 67(a1):C45-C46. DOI:10.1107/S0108767311098965 · 2.31 Impact Factor
  • Acta Crystallographica Section A Foundations of Crystallography 08/2011; 67(a1):C353-C353. DOI:10.1107/S0108767311091094 · 2.31 Impact Factor
  • Source
    Q. Xu · A. Deacon · I. A. Wilson
    Acta Crystallographica Section A Foundations of Crystallography 08/2011; 67(a1):C590-C590. DOI:10.1107/S0108767311085084 · 2.31 Impact Factor
  • Source
    Acta Crystallographica Section A Foundations of Crystallography 08/2011; 67(a1):C588-C588. DOI:10.1107/S0108767311085126 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution), have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function.
    PLoS ONE 07/2011; 6(7):e21875. DOI:10.1371/journal.pone.0021875 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, "closed" conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes.
    PLoS ONE 07/2011; 6(7):e22013. DOI:10.1371/journal.pone.0022013 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structures of an unliganded and adenosine 5'-monophosphate (AMP) bound, metal-dependent phosphoesterase (YP_910028.1) from Bifidobacterium adolescentis are reported at 2.4 and 1.94 Å, respectively. Functional characterization of this enzyme was guided by computational analysis and then confirmed by experiment. The structure consists of a polymerase and histidinol phosphatase (PHP, Pfam: PF02811) domain with a second domain (residues 105-178) inserted in the middle of the PHP sequence. The insert domain functions in binding AMP, but the precise function and substrate specificity of this domain are unknown. Initial bioinformatics analyses yielded multiple potential functional leads, with most of them suggesting DNA polymerase or DNA replication activity. Phylogenetic analysis indicated a potential DNA polymerase function that was somewhat supported by global structural comparisons identifying the closest structural match to the alpha subunit of DNA polymerase III. However, several other functional predictions, including phosphoesterase, could not be excluded. Theoretical microscopic anomalous titration curve shapes, a computational method for the prediction of active sites from protein 3D structures, identified potential reactive residues in YP_910028.1. Further analysis of the predicted active site and local comparison with its closest structure matches strongly suggested phosphoesterase activity, which was confirmed experimentally. Primer extension assays on both normal and mismatched DNA show neither extension nor degradation and provide evidence that YP_910028.1 has neither DNA polymerase activity nor DNA-proofreading activity. These results suggest that many of the sequence neighbors previously annotated as having DNA polymerase activity may actually be misannotated.
    Proteins Structure Function and Bioinformatics 07/2011; 79(7):2146-60. DOI:10.1002/prot.23035 · 2.63 Impact Factor
  • Source
    Henry van den Bedem · Guenter Wolf · Qingping Xu · Ashley M Deacon
    [Show abstract] [Hide abstract]
    ABSTRACT: The Joint Center for Structural Genomics (JCSG), one of four large-scale structure-determination centers funded by the US Protein Structure Initiative (PSI) through the National Institute for General Medical Sciences, has been operating an automated distributed structure-solution pipeline, Xsolve, for well over half a decade. During PSI-2, Xsolve solved, traced and partially refined 90% of the JCSG's nearly 770 MAD/SAD structures at an average resolution of about 2 Å without human intervention. Xsolve executes many well established publicly available crystallography software programs in parallel on a commodity Linux cluster, resulting in multiple traces for any given target. Additional software programs have been developed and integrated into Xsolve to further minimize human effort in structure refinement. Consensus-Modeler exploits complementarities in traces from Xsolve to compute a single optimal model for manual refinement. Xpleo is a powerful robotics-inspired algorithm to build missing fragments and qFit automatically identifies and fits alternate conformations.
    Acta Crystallographica Section D Biological Crystallography 04/2011; 67(Pt 4):368-75. DOI:10.1107/S0907444910039934 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considerable attention has recently been paid to the N-Myc downstream-regulated gene (NDRG) family because of its potential as a tumor suppressor in many human cancers. Primary amino acid sequence information suggests that the NDRG family proteins may belong to the α/β-hydrolase (ABH) superfamily; however, their functional role has not yet been determined. Here, we present the crystal structures of the human and mouse NDRG2 proteins determined at 2.0 and 1.7 Å resolution, respectively. Both NDRG2 proteins show remarkable structural similarity to the ABH superfamily, despite limited sequence similarity. Structural analysis suggests that NDRG2 is a nonenzymatic member of the ABH superfamily, because it lacks the catalytic signature residues and has an occluded substrate-binding site. Several conserved structural features suggest NDRG may be involved in molecular interactions. Mutagenesis data based on the structural analysis support a crucial role for helix α6 in the suppression of TCF/β-catenin signaling in the tumorigenesis of human colorectal cancer, via a molecular interaction.
    Journal of Biological Chemistry 04/2011; 286(14):12450-60. DOI:10.1074/jbc.M110.170803 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In gram-negative bacteria, ∼30-60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.
    PLoS ONE 03/2011; 6(3):e17624. DOI:10.1371/journal.pone.0017624 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with flavin adenine dinucleotide (FAD) and a bacterial lipid. The DGGR structure can be assigned to the well-studied, p-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two, narrow, curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the enzyme and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of geranylgeranyl reductases. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD.
    Journal of Molecular Biology 12/2010; 404(3):403-17. DOI:10.1016/j.jmb.2010.09.032 · 4.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam.
    Protein Science 11/2010; 19(11):2131-40. DOI:10.1002/pro.497 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years. The JCSG has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe, as well as making substantial inroads into structural coverage of an entire organism. Targets are processed through an extensive combination of bioinformatics and biophysical analyses to efficiently characterize and optimize each target prior to selection for structure determination. The pipeline uses parallel processing methods at almost every step in the process and can adapt to a wide range of protein targets from bacterial to human. The construction, expansion and optimization of the JCSG gene-to-structure pipeline over the years have resulted in many technological and methodological advances and developments. The vast number of targets and the enormous amounts of associated data processed through the multiple stages of the experimental pipeline required the development of variety of valuable resources that, wherever feasible, have been converted to free-access web-based tools and applications.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 10/2010; 66(Pt 10):1137-42. DOI:10.1107/S1744309110038212 · 0.53 Impact Factor

Publication Stats

3k Citations
562.31 Total Impact Points


  • 2001–2013
    • Stanford University
      • SSRL - Stanford Synchrotron Radiation Lightsource
      Palo Alto, California, United States
  • 2012
    • Universität Osnabrück
      • Biochemistry
      Osnabrück, Lower Saxony, Germany
  • 2010
    • Sanford-Burnham Medical Research Institute
      • Bioinformatics and Systems Biology Research Program
      La Jolla, California, United States
  • 2008
    • University of North Carolina at Chapel Hill
      North Carolina, United States
  • 2004
    • The Scripps Research Institute
      • Department of Cell and Molecular Biology
      لا هویا, California, United States
  • 2002
    • University of Helsinki
      • Institute of Biotechnology
      Helsinki, Province of Southern Finland, Finland
    • International Union of Toxicology
      Reston, Virginia, United States
  • 1998–2000
    • Cornell University
      • Department of Chemistry and Chemical Biology
      Ithaca, New York, United States