Francisco J Urbano

University of Arkansas at Little Rock, Little Rock, Arkansas, United States

Are you Francisco J Urbano?

Claim your profile

Publications (54)191.6 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This brief review resolves a number of persistent conflicts regarding the location and characteristics of the mesencephalic locomotor region, which has in the past been described as not locomotion-specific and is more likely the pedunculopontine nucleus (PPN). The parameters of stimulation used to elicit changes in posture and locomotion we now know are ideally suited to match the intrinsic membrane properties of PPN neurons. The physiology of these cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for the treatment of gait and postural deficits in Parkinson's disease (PD). The discussion explains many of the effects reported following deep brain stimulation (DBS) of the PPN by different groups and provides guidelines for the determination of long-term assessment and effects of PPN DBS. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from DBS for movement disorders. Despite these improvements, there remains a great opportunity for further understanding of the mechanisms through which DBS has its effects and for further development of appropriate technology to effect these treatments. We review the scientific basis for one of the newest targets, the PPN, in the treatment of PD and other movement disorders, and address the needs for further investigation.
    Journal of neural transmission (Vienna, Austria : 1996). 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic use of methamphetamine (METH) leads to long-lasting cognitive dysfunction in humans and in animal models. Modafinil is a wake-promoting compound approved for the treatment of sleeping disorders. It is also prescribed off label to treat METH dependence. In the present study, we investigated whether modafinil could improve cognitive deficits induced by sub-chronic METH treatment in mice by measuring visual retention in a Novel Object Recognition (NOR) task. After sub-chronic METH treatment (1 mg/Kg, once a day for 7 days), mice performed the NOR task, which consisted of habituation to the object recognition arena (5 min a day, 3 consecutive days), training session (2 equal objects, 10 min, day 4), and a retention session (1 novel object, 5 min, day 5). One hour before the training session, mice were given a single dose of modafinil (30 or 90 mg/Kg). METH-treated mice showed impairments in visual memory retention, evidenced by equal preference of familiar and novel objects during the retention session. The lower dose of modafinil (30 mg/Kg) had no effect on visual retention scores in METH-treated mice, while the higher dose (90 mg/Kg) rescued visual memory retention to control values. We also measured ERK phosphorylation in medial prefrontal cortex (mPFC), hippocampus, and nucleus accumbens (NAc) of METH- and vehicle-treated mice that received modafinil 1 hr before exposure to novel objects in the training session, compared to mice placed in the arena without objects. Elevated Extracellular signal-regulated kinase (ERK) phosphorylation was found in the mPFC of vehicle-treated mice, but not in METH-treated mice, exposed to objects (p<0.05). The lower dose of modafinil had no effect on ERK phosphorylation in METH-treated mice, while 90 mg/Kg modafinil treatment restored the ERK phosphorylation induced by novelty in METH-treated mice to values comparable to controls (p<0.05). We found neither a novelty nor treatment effect on ERK phosphorylation in hippocampus or nucleus accumbens (NAc) of vehicle- and METH-treated mice receiving acute 90 mg/Kg modafinil treatment. Our results showed a palliative role of modafinil against METH-induced visual cognitive impairments, possibly by normalizing ERK signaling pathways in mPFC. Modafinil may be a valuable pharmacological tool for the treatment of cognitive deficits observed in human METH abusers as well as in other neuropsychiatric conditions.
    Neuropharmacology 02/2014; · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, have been described to have a post-synaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined behavioral wire hanging test with electrophysiology, pharmacological and immunofluorescence techniques to compare wildtype and ASIC1a lacking mice (ASIC1a -/- knockout). Our results showed: 1) ASIC1a -/- female mice were weaker than wildtype, presenting shorter times during the wire hanging test. 2) Spontaneous neurotransmitter release were reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs. 3) ASIC-1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH=6.0; Hepes+MES-based solution). 4) Immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.
    AJP Cell Physiology 12/2013; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus, intralaminar parafascicular nucleus, and pontine SubCoeruleus nucleus dorsalis all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high-threshold, voltage-dependent P/Q-type calcium channels, or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries: an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking versus during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking versus REM sleep after sleep or REM sleep deprivation?
    Experimental Brain Research 12/2013; · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pedunculopontine nucleus (PPN) is a component of the reticular activating system (RAS), and is involved in the activated states of waking and rapid eye movement sleep (REM). Gamma oscillations (~30-80 Hz) are evident in all PPN neurons and are mediated by high threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high speed calcium imaging would reveal calcium-mediated oscillations in dendritic compartments in synchrony with patch clamp recorded oscillations during depolarizing current ramps. Patch-clamped 8-16 day old rat PPN neurons (n = 67 out of 121) were filled with Fura 2, Bis Fura, or OGB1/CHR. This study also characterized a novel ratiometric technique using Oregon Green BAPTA-1 (OGB1) with co-injections of a new long-stokes-shift dye, Chromeo 494 (CHR). Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker, cadmium, or by the combination of ω-agatoxin-IVA, a specific P/Q-type calcium channel blocker, and ω-conotoxin-GVIA, a specific N-type calcium channel blocker. The calcium transients were evident in different dendrites (suggesting channels are present throughout the dendritic tree), along the sampled length without interruption (suggesting channels are evenly distributed), and appeared to represent a summation of oscillations present in the soma. We confirm that PPN calcium channel-mediated oscillations are due to P/Q- and N-type channels, and reveal the fact that these channels are distributed along the dendrites of PPN cells.
    Journal of Applied Physiology 08/2013; · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement (REM) sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G-protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole-cell patch clamp recordings were performed in rat brainstem slices from 9-17 day old pups. Previous results showed that leptin caused a partial blockade of sodium (INa ) and h-current (IH ) in PPN neurons. TA (100 nM) reduced the blockade of INa (~50% reduction) and IH (~93% reduction) caused by leptin. Intracellular GDPβ (a G-protein inhibitor) significantly reduced the effect of leptin on INa (~60% reduction) but not on IH (~25% reduction). Intracellular GTPγS (a G-protein activator) reduced the effect of leptin on both INa (~80% reduction) and IH (~90% reduction). These results suggest that the effects of leptin on the intrinsic properties of PPN neurons are leptin receptor- and G-protein-dependent. We also found that leptin enhanced NMDA receptor-mediated responses in single neurons and in the PPN population as a whole, an effect blocked by TA. These experiments further strengthen the association between leptin dysregulation and sleep disturbances. This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 05/2013; · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The parafascicular nucleus (Pf) is an ascending target of the pedunculopontine nucleus (PPN) and is part of the "non-specific" intralaminar thalamus. The PPN, part of the reticular activating system, is mainly involved in waking and rapid eye movement sleep. Gamma oscillations are evident in all Pf neurons and mediated by high threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in synchrony with patch clamp recorded oscillations during depolarizing current ramps. Patch-clamped 9 to 19-day-old rat Pf neurons (n = 148, dye filled n = 61, control n = 87) were filled with Fura 2, Bis Fura, or Oregon Green BAPTA-1. Calcium transients were generated during depolarizing current ramps and visualized with a high-speed, wide-field fluorescence imaging system. Cells manifested calcium transients with oscillations in both somatic and proximal dendrite fluorescence recordings. Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker, cadmium, or the combination of ω-Agatoxin-IVA (AgA), a specific P/Q-type calcium channel blocker and ω-conotoxin-GVIA (CgTx), a specific N-type calcium channel blocker. We developed a viable methodology for studying high-speed oscillations without the use of multi-photon imaging systems.
    Pflügers Archiv - European Journal of Physiology 04/2013; · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that persistent application of the non-specific cholinergic agonist carbachol (CAR) increased the frequency of calcium channel-mediated oscillatory activity in pedunculopontine nucleus (PPN) neurons, which we identified as dependent on voltage-gated, high-threshold P/Q-type channels. Here, we tested the hypothesis that M2 muscarinic receptors and G-proteins associated with M2 receptors mediate the increase in oscillatory frequency in PPN neurons. We found, using depolarizing ramps, that patch clamped 9-12 day old rat PPN neurons (n = 189) reached their peak oscillatory activity around -20 mV membrane potential. Acute (short duration) application of CAR blocked the oscillatory activity through M2 muscarinic receptors, an effect blocked by atropine. However, persistent (long duration) application of CAR significantly increased the frequency of oscillatory activity in PPN neurons through M2 receptors [40 ± 1 Hz (with CAR) vs. 23 ± 1 Hz (without CAR); p < 0.001]. We then tested the effects of the G-protein antagonist guanosine 5'-[β-thio] diphosphate trilithium salt (GDP-β-S), and the G-protein agonist 5'-[γ-thio] triphosphate trilithium salt (GTP-γ-S). We found, using a three-step protocol in voltage-clamp mode, that the increase in the frequency of oscillations induced by M2 cholinergic receptors was linked to a voltage-dependent G-protein mechanism. In summary, these results suggest that persistent cholinergic input creates a permissive activation state in the PPN that allows high frequency P/Q-type calcium channel-mediated gamma oscillations to occur.
    Frontiers in Neurology 01/2013; 4:176.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptin, a hormone that regulates appetite and energy expenditure, is increased in obese individuals, although these individuals often exhibit leptin resistance. Obesity is characterized by sleep/wake disturbances, such as excessive daytime sleepiness, increased REM sleep, increased nighttime arousals, and decreased percentage of total sleep time. Several studies have shown that short sleep duration is highly correlated with decreased leptin levels in both animal and human models. Arousal and rapid eye movement (REM) sleep are regulated by the cholinergic arm of the reticular activating system, the pedunculopontine nucleus (PPN). The goal of this project was to determine the role of leptin in the PPN, and thus in obesity-related sleep disorders. Whole-cell patch-clamp recordings were conducted on PPN neurons in 9- to 17-day-old rat brainstem slices. Leptin decreased action potential (AP) amplitude, AP frequency, and h-current (I (H)). These findings suggest that leptin causes a blockade of Na(+) channels. Therefore, we conducted an experiment to test the effects of leptin on Na(+) conductance. To determine the average voltage dependence of this conductance, results from each cell were equally weighted by expressing conductance as a fraction of the maximum conductance in each cell. I (Na) amplitude was decreased in a dose-dependent manner, suggesting a direct effect of leptin on these channels. The average decrease in Na(+) conductance by leptin was ~40 %. We hypothesize that leptin normally decreases activity in the PPN by reducing I (H) and I (Na) currents, and that in states of leptin dysregulation (i.e., leptin resistance) this effect may be blunted, therefore causing increased arousal and REM sleep drive, and ultimately leading to sleep-related disorders.
    Journal of Neural Transmission 12/2012; · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methylphenidate (MPH) is widely used to treat children and adolescents diagnosed with attention deficit/hyperactivity disorder. Although MPH shares mechanistic similarities to cocaine, its effects on GABAergic transmission in sensory thalamic nuclei are unknown. Our objective was to compare cocaine and MPH effects on GABAergic projections between thalamic reticular and ventrobasal (VB) nuclei. Mice (P18-30) were subjected to binge-like cocaine and MPH acute and sub-chronic administrations. Cocaine and MPH enhanced hyperlocomotion, though sub-chronic cocaine-mediated effects were stronger than MPH effects. Cocaine and MPH sub-chronic administration altered paired-pulse and spontaneous GABAergic input differently. The effects of cocaine on evoked paired-pulse GABA-mediated currents changed from depression to facilitation with the duration of the protocols used, while MPH induced a constant increase throughout the administration protocols. Thalamic reticular nucleus GAD67 and VB Ca(V) 3.1 protein levels were measured using Western blot in order to better understand their link to increased GABA release. Both proteins were increased by sub-chronic administration of cocaine. MPH showed effects on GABAergic transmission that seems less disruptive than cocaine. Unique effects of cocaine on postsynaptic VB calcium currents might explain deleterious cocaine effects on sensory thalamic nuclei. These results suggest that cocaine and MPH produced distinct presynaptic alterations on GABAergic transmission. © 2012 International Society for Neurochemistry, J. Neurochem. (2012) 10.1111/jnc.12113.
    Journal of Neurochemistry 12/2012; · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We established a cell model to study the acute effects of pregabalin (PGB), a drug widely used in epilepsy and neuropathic pain, on voltage gated Ca(V)2.1 (P/Q-type) calcium channels function and distribution at the membrane level. HEK293t cells were transfected with plasmids coding for all subunits of the Ca(V)2.1 channel. We used a α1 fused to an eGFP tag to follow its distribution in time and at different experimental conditions. The expressed channel was functional as shown by the presence of barium-mediated, calcium currents of transfected cells measured by 'whole-cell voltage-clamp' recordings, showing a maximum current peak in the I-V curve at +20mV. The GFP fluorescent signal was confined to the periphery of the cells. Incubation with 500μM PGB, that binds α2δ subunits, for 30min induced changes in localization of the fluorescent subunits as measured by fluorescent time lapse microscopy. These changes correlated with a reversible reduction of barium currents through Ca(V)2.1 calcium channels under the same conditions. However, no changes in the cellular distribution of the subunits were visualized for cells either expressing another membrane associated protein or after exposure of the Ca(V)2.1 channels to isoleucine, another α2δ ligand. Together these results show strong evidence for an acute effect of PGB on Ca(V)2.1 calcium channels' currents and distribution and suggest that internalization of Ca(V)2.1 channels might be a mechanism of PGB action.
    Brain research bulletin 10/2012; · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit 1) electrical coupling mainly in GABAergic cells, and 2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) 1) show electrical coupling, and 2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.
    Sleep Medicine Reviews 10/2012; · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ca(V)2.1 Ca(2+) channels have a dominant and specific role in initiating fast synaptic transmission at central excitatory synapses, through a close association between release sites and calcium sensors. Familial hemiplegic migraine type-1 (FHM-1) is an autosomal-dominant subtype of migraine with aura, caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of Ca(V)2.1 channel. We used knock-in (KI) transgenic mice harbouring the FHM-1 mutation R192Q to study the consequences of this mutation in neurotransmission at the giant synapse of the auditory system formed by the presynaptic calyx of Held terminal and the postsynaptic neurons of the Medial Nucleus of the Trapezoid Body. Although synaptic transmission seems unaffected by low frequency stimulation in physiological Ca2+ concentration, we observed that with low Ca(2+) concentrations (< 1 mM) excitatory postsynaptic currents (EPSCs) showed increased amplitudes in R192Q KI mice compared to WT, meaning significant differences in the non-linear calcium-dependence of nerve-evoked transmitter release. In addition, when EPSCs were evoked by broadened presynaptic action potentials (achieved by inhibition of K(+) channels) via Ca(V)2.1 triggered exocytosis, the R192Q KI mice exhibited further enhancement of EPSC amplitude and charge compared with WT mice. Repetitive stimulation of afferent axons to the MNTB at different frequencies caused short term depression of EPSCs that recovered significantly faster in R192Q KI than in WT mice. Faster recovery in R192Q KI mice was prevented by the calcium chelator EGTA-AM, pointing to enlarged residual calcium as a key factor in accelerating the replenishment of synaptic vesicles.
    Journal of Neurophysiology 09/2012; · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep-wake oscillation that is orchestrated by brainstem-thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep-wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of pre-conscious awareness, and provide the essential stream of information for the formulation of many of our actions.
    Frontiers in Neurology 01/2012; 3:6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4×5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2×90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.
    PLoS ONE 01/2012; 7(10):e46599. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The parafascicular nucleus (Pf) receives cholinergic input from the pedunculopontine nucleus, part of the reticular activating system involved in waking and rapid eye movement (REM) sleep, and sends projections to the cortex. We tested the hypothesis that Pf neurons fire maximally at gamma band frequency (30-90 Hz), that this mechanism involves high-threshold voltage-dependent P/Q- and N-type calcium channels, and that this activity is enhanced by the cholinergic agonist carbachol (CAR). Patch-clamped 9- to 25-day-old rat Pf neurons (n = 299) manifested a firing frequency plateau at gamma band when maximally activated (31.5 ± 1.5 Hz) and showed gamma oscillations when voltage-clamped at holding potentials above -20 mV, and the frequency of the oscillations increased significantly with age (24.6 ± 3.8 vs. 51.6 ± 4.4 Hz, P < 0.001) but plateaued at gamma frequencies. Cells exposed to CAR showed significantly higher frequencies early in development compared with those without CAR (24.6 ± 3.8 vs. 41.7 ± 4.3 Hz, P < 0.001) but plateaued with age. The P/Q-type calcium channel blocker ω-agatoxin-IVA (ω-Aga) blocked gamma oscillations, whereas the N-type blocker ω-conotoxin-GVIA (ω-CgTx) only partially decreased the power spectrum amplitude of gamma oscillations. The blocking effect of ω-Aga on P/Q-type currents and ω-CgTx on N-type currents was consistent over age. We conclude that P/Q- and N-type calcium channels appear to mediate Pf gamma oscillations during development. We hypothesize that the cholinergic input to the Pf could activate these cells to oscillate at gamma frequency, and perhaps relay these rhythms to cortical areas, thus providing a stable high-frequency state for "nonspecific" thalamocortical processing.
    Journal of Neurophysiology 11/2011; 107(3):772-84. · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies on the genetic forms of epilepsy, chronic pain, and migraine caused by mutations in ion channels have given crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological disorders. In this review we focus on the role of mutated CaV2.1 (i.e., P/Q-type) voltage-activated Ca2+ channels, and on the ultimate consequences that mutations causing familial hemiplegic migraine type-1 (FHM1) have in neurotransmitter release. Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of CaV2.1 channels. Mutated CaV2.1 channels activate at more hyperpolarizing potentials and lead to a gain-of-function in synaptic transmission. This gain-of-function might underlie alterations in the excitatory/ inhibitory balance of synaptic transmission, favoring a persistent state of hyperexcitability in cortical neurons that would increase the susceptibility for cortical spreading depression (CSD), a mechanism believed to initiate the attacks of migraine with aura.
    Journal of Physiology-Paris 11/2011; 106(1-2):12-22. · 0.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pedunculopontine nucleus (PPN), part of the reticular activating system, modulates waking and paradoxical sleep. During waking and paradoxical sleep, EEG responses are characterized by low-amplitude, high-frequency oscillatory activity in the beta-gamma band range (~20-80 Hz). We have previously reported that gamma band activity may be intrinsically generated by the membrane electroresponsiveness of PPN neurons, and that the neuronal ensemble generates different patterns of gamma activity in response to specific transmitters. This study attempted to identify the voltage-gated calcium and potassium channels involved in the rising and falling phases of gamma oscillations in PPN neurons. We found that all rat (8-14 day) PPN cell types showed gamma oscillations in the presence of TTX and synaptic blockers when membrane potential was depolarized using current ramps. PPN neurons showed gamma oscillations when voltage-clamped at holding potentials above -30 mV, suggesting that their origin may be spatially located beyond voltage-clamp control. The average frequency for all PPN cell types was 23 ± 1 Hz and this increased under carbachol (47 ± 2 Hz; anova df = 64, t = 12.5, P < 0.001). The N-type calcium channel blocker ω-conotoxin-GVIA partially reduced gamma oscillations, while the P/Q-type blocker ω-agatoxin-IVA abolished them. Both ω-CgTX and ω-Aga blocked voltage-dependent calcium currents, by 56 and 52% respectively. The delayed rectifier-like potassium channel blocker α-dendrotoxin also abolished gamma oscillations. In carbachol-induced PPN population responses, ω-agatoxin-IVA reduced higher, and ω-CgTx mostly lower, frequencies. These results suggest that voltage-dependent P/Q- and, to a lesser extent, N-type calcium channels mediate gamma oscillations in PPN.
    European Journal of Neuroscience 07/2011; 34(3):404-15. · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ca(v)2.1 channels (P/Q-type) play a prominent role in controlling neurotransmitter release. Transgenic mice in which the α1A pore-forming subunit of Ca(v)2.1 channels is ablated (KO) provide a powerful tool to study Ca(v)2.1 function in synaptic transmission in vivo. Whole-cell patch clamp was used to measure inhibitory glycinergic postsynaptic currents (IPSCs) from the lateral superior olive (LSO). Comparing wild-type (WT) and KO mice, we investigated the relevance of P/Q-type calcium channels at a glycinergic synapse mediated by multiple types of Ca(2+) channels, in opposition to synapses where only this type of Ca(2+) channels are in charge of transmitter release. We found that in KO mice, N-type and L-type Ca(2+) channels control synaptic transmission, resulting in a functional but reduced glycinergic transmitter release. Pair pulse facilitation of synaptic currents is retained in KO mice, even when synaptic transmission is driven by either N or L-type calcium channels alone, in contrast with lack of this phenomenon in other synapses which are exclusively mediated by P/Q-type channels. Thus, pointing a difference between P/Q- and N-type channels present in single or multiple types of calcium channels driven synapses. Significant alterations in short-term synaptic plasticity were observed. KO mice exhibited a stronger short term depression (STD) of IPSCs during repetitive stimulation at high frequency and recovered with a larger time constant compared to WT mice. Finally, transmitter release at the LSO synapse from KO mice was strongly modulated by presynaptic GTP-binding protein-coupled receptor γ-aminobutyric acid type B (GABA(B)).
    Neuroscience 06/2011; 192:219-30. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dorsal subcoeruleus nucleus (SubCD) is involved in generating two signs of rapid eye movement (REM) sleep: muscle atonia and ponto-geniculo-occipital (PGO) waves. We tested the hypothesis that single cell and/or population responses of SubCD neurons are capable of generating gamma frequency activity in response to intracellular stimulation or receptor agonist activation. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. All SubCD neurons (n = 103) fired at gamma frequency when subjected to depolarizing steps. Two statistically distinct populations of neurons were observed, which were distinguished by their high (>80 Hz, n = 24) versus low (35-80 Hz, n = 16) initial firing frequencies. Both cell types exhibited subthreshold oscillations in the gamma range (n = 43), which may underlie the gamma band firing properties of these neurons. The subthreshold oscillations were blocked by the sodium channel blockers tetrodotoxin (TTX, n = 21) extracellularly and N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314) intracellularly (n = 5), indicating they were sodium channel dependent. Gamma frequency subthreshold oscillations were observed in response to the nonspecific cholinergic receptor agonist carbachol (CAR, n = 11, d = 1.08) and the glutamate receptor agonists N-methyl-d-aspartic acid (NMDA, n = 12, d = 1.09) and kainic acid (KA, n = 13, d = 0.96), indicating that cholinergic and glutamatergic inputs may be involved in the activation of these subthreshold currents. Gamma band activity also was observed in population responses following application of CAR (n = 4, P < 0.05), NMDA (n = 4, P < 0.05) and KA (n = 4, P < 0.05). Voltage-sensitive, sodium channel-dependent gamma band activity appears to be a part of the intrinsic membrane properties of SubCD neurons.
    AJP Cell Physiology 05/2011; 301(2):C327-35. · 3.71 Impact Factor

Publication Stats

694 Citations
191.60 Total Impact Points

Institutions

  • 2012–2013
    • University of Arkansas at Little Rock
      Little Rock, Arkansas, United States
  • 1970–2013
    • University of Buenos Aires
      • • Instituto de Filología Clásica
      • • Physiology Section
      • • Faculty of Exact and Natural Sciences
      • • Biological Sciences Department
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2010–2012
    • Buenos Aires Institute of Neuroscience
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2011
    • National Scientific and Technical Research Council
      Buenos Aires, Buenos Aires F.D., Argentina
  • 2003
    • Stanford University
      • Department of Molecular and Cellular Physiology
      Stanford, CA, United States
  • 2002
    • New York University
      • Department of Physiology and Neuroscience
      New York City, NY, United States
    • Orlando Health
      Orlando, Florida, United States
  • 2001
    • San Diego Zoo
      San Diego, California, United States
  • 2000
    • Universitat Rovira i Virgili
      • Faculty of Medicine and Science of Health
      Tarragona, Catalonia, Spain