Hwan Myung Lee

Konkuk University, Sŏul, Seoul, South Korea

Are you Hwan Myung Lee?

Claim your profile

Publications (33)101.82 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Chrysanthemum boreale Makino (Compositae) (CBM) is a traditional medicine that has been used for the prevention or treatment of various disorders; it has various properties including antioxidation, anti-inflammation, and antitumor. Objective: The present study was designed to explore the in vitro effect of CBM flower floral water (CBMFF) on atherosclerosis-related responses in rat aortic smooth muscle cells (RASMCs). Materials and methods: CBMFF was extracted from CBM flower by steam distillation and analyzed using gas chromatography–mass spectrometry. The anti-atherosclerosis activity of CBMFF was tested by estimating platelet-derived growth factor (PDGF)-BB (10 ng/mL)-induced proliferation and migration levels and intracellular kinase pathways in RASMCs at CBMFF concentrations of 0.01–100 μM and analyzing ex vivo aortic ring assay. Results: Gas chromatography–mass spectrometry showed that the CBMFF contained a total of seven components. The CBMFF inhibits PDGF-BB-stimulated RASMC migration and proliferation (IC50: 0.010 μg/mL). Treatment of RASMCs with PDGF-BB induced PDGFR-β phosphorylation and increased the phosphorylations of MAPK p38 and ERK1/2. CBMFF addition prevented PDGF-BB-induced phosphorylation of these kinases (IC50: 008 and 0.018 μg/mL, for p38 MAPK and ERK1/2, respectively), as well as PDGFR-β (IC50: 0.046 μg/mL). Treatment with inhibitors of PDGFR, P38 MAPK, and ERK1/2 decreased PDGF-BB-increased migration and proliferation in RASMCs. Moreover, the CBMFF suppressed PDGF-BB-increased sprout outgrowth of aortic rings (IC50: 0.047 μg/mL). Discussion and conclusion: These results demonstrate that CBMFF may inhibit PDGF-BB-induced vascular migration and proliferation, most likely through inhibition of the PDGFR-β-mediated MAPK pathway; therefore, the CBMFF may be promising candidate for the development of herbal remedies for vascular disorders.
    Pharmaceutical Biology 10/2014; · 1.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effect of essential oil from the flower of Chrysanthemum boreale Makino (CBMEO) on growth of human keratinocytes (HaCaTs) and explored a possible mechanism for this response. CBMEO was extracted using the steam distillation method. CBMEO contained a total of 33 compounds. CBMEO stimulated HaCaT proliferation (EC50, 0.028 μg/mL) and also induced phosphorylation of Akt and ERK1/2 in HaCaTs (EC50, 0.007 and 0.005 μg/mL, for phosphorylated Akt and ERK1/2, respectively). Moreover, CBMEO promoted wound closure in the dorsal side skin of rat tail. This study demonstrated that CBMEO can stimulate growth of human skin keratinocytes, probably through the Akt and ERK1/2 pathways. Therefore, CBMEO may be helpful in skin regeneration and wound healing in human skin, and may also be a possible cosmetic material for skin beauty.
    Natural Product Research 08/2014; · 1.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DJ-1/park7, a multifunctional protein, may play essential roles in the vascular system. However, the function of DJ-1/park7 in vascular contractility has remained unclear. The present study was designed to investigate whether the DJ-1/park7 is involved in the regulation of vascular contractility and systolic blood pressure (SBP). Norepinephrine (NE) elevated contraction in endothelium-intact vessels in a dose-dependent manner, to a greater extent in DJ-1/park7 knockout (DJ-1/park7(-/-)) mice than in wild-type (DJ-1/park7(+/+)) mice. Acetylcholine inhibited NE-evoked contraction in endothelium-intact vessels, and this was markedly impaired in DJ-1/park7(-/-) mice compared with DJ-1/park7(+/+) mice. Nitric oxide (NO) production (82.1±2.8% of control) and endothelial NO synthase (eNOS) expression (61.7±8.9%) were lower, but H2O2 production (126.4±8.6%) was higher, in endothelial cells from DJ-1/park7(-/-) mice than in those from DJ-1/park7(+/+) controls; these effects were reversed by DJ-1/park7-overexpressing endothelial cells from DJ-1/park7(-/-) mice. Histone deacetylase (HDAC)-1 recruitment and H3 histone acetylation at the eNOS promoter were elevated and diminished, respectively, in DJ-1/park7(-/-) mice compared with DJ-1/park7(+/+) controls. Moreover, SBP was significantly elevated in DJ-1/park7(-/-) mice compared with DJ-1/park7(+/+) controls, but this elevation was inhibited in mice treated with valproic acid, an inhibitor of class I HDACs including HDAC-1. These results demonstrate that DJ-1/park7 protein may be implicated in the regulation of vascular contractility and blood pressure, probably by the impairment of NO production through H2O2-mediated epigenetic inhibition of eNOS expression.
    Cardiovascular Research 12/2013; · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the altered expression of Tie receptors and angiopoietin ligands during hypoxic conditions, the effect of hypoxia on Tie-mediated endothelial responses has not been elucidated. In this study, we found that hypoxia increased Tie receptor expression but attenuated angiopoietin-1(Ang1)-induced Tie2 activity, including Tie2 phosphorylation, Tie2 downstream signaling activation, and endothelial cell tube formation. However, Ang1 binding to endothelial cells was increased during hypoxic conditions. We demonstrated that Tie1 suppression restored the Tie2 activity and that Tie1-mediated Tie2 suppression was independent of tyrosine phosphatase activity. These results suggest that under hypoxic conditions, Tie1 is critical for reducing Ang1-induced Tie2 activity and angiogenesis.
    Biochemical and Biophysical Research Communications 06/2013; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: This study was attempted to identify new molecules expressed on the plasma membrane of human umbilical vein endothelial cells (HUVECs) using monoclonal antibody-based proteomics technology and to determine the effect of the identified antibody on vascular reactivity. Methods: Twenty-two antibodies were developed from rats inoculated with HUVECs, and their effects were determined by observing vascular reactivity. Results: Among the 22 antibodies, the C-7 antibody significantly inhibited endothelium-dependent vasorelaxation in response to acetylcholine (ACh) but not to histamine. Moreover, the C-7 antibody did not affect norepinephrine-induced contraction in either the endothelium-intact or -denuded aorta. A proteomics study involving immunoprecipitation of the C-7 antibody with biotinylated HUVECs showed that this antibody binds to plasma membrane proteins corresponding to immunoglobulin heavy chain (VHDJ region), chaperonin-containing T-complex polypeptide 1 and α-actinin 4. The muscarinic M3 ACh receptor and α-actinin 4 were colocalized on the plasma membrane of HUVECs, and the colocalization was found to increase in response to ACh and was inhibited by pretreatment with the C-7 antibody. Conclusions: These results demonstrate that monoclonal C-7 antibody exerts an inhibitory effect on endothelium-dependent vasorelaxation induced by ACh and that this response may at least partially result from the inhibition of α-actinin 4.
    Journal of Vascular Research 05/2013; 50(3):210-220. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative stress, has been recently rediscovered to inhibit Rac1 in neutrophils and macrophages, thereby inhibiting Rac1-linked functions of these cells, including reactive oxygen species production through NADPH oxidase activation, phagocytosis, chemotaxis, and cytokine release. In vascular smooth muscle cells (VSMCs), reactive oxygen species also induce abnormal proliferation and migration leading to progression of atherosclerosis. Based upon the involvement of reactive oxygen species in phagocytic cells and VSMCs during the atherosclerotic process, we hypothesized that 8-OHdG could have antiatherosclerotic action and tested this hypothesis in an experimentally induced atherosclerosis in mice. Partially ligated ApoE knockout mice, a more physiologically relevant model of low and oscillatory flow, developed an advanced lesion in 2 weeks, and orally administered 8-OHdG significantly reduced plaque formation along with reduced superoxide formation, monocyte/macrophage infiltration, and extracellular matrix (ECM) accumulation. The effects of 8-OHdG observed in primary VSMCs were consistent with the in vivo effects of 8-OHdG and were inhibitory to angiotensin II or platelet-derived growth factor-induced production of reactive oxygen species, proliferation, migration, and ECM production. Also, angiotensin II-induced Rac1 activity in VSMCs was significantly inhibited by 8-OHdG, and transfection of constitutively active Rac1 reversed the inhibitory effect of 8-OHdG on VSMC activation. Molecular docking study showed that 8-OHdG stabilizes Rac1-GEF complex, indicating the physical contact of 8-OHdG with Rac1. These findings highly suggest that the antiatherosclerotic effect of 8-OHdG is mediated by inhibition of Rac1 activity. In conclusion, our results show a novel action of orally active 8-OHdG in suppressing atherosclerotic plaque formation in vivo and VSMC activation in vitro through inhibition of Rac1, which emphasizes a new therapeutic avenue to benefit atherosclerosis.
    Free Radical Biology and Medicine 04/2012; 53(1):109-21. · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative stress, has been recently rediscovered to inhibit Rac1 in neutrophils and macrophages, thereby inhibiting Rac1-linked functions of these cells including reactive oxygen species production through NADPH oxidase activation, phagocytosis, chemotaxis, and cytokine release. In vascular smooth muscle cells (VSMCs), reactive oxygen species also induce abnormal proliferation and migration leading to progression of atherosclerosis. Based upon the involvement of reactive oxygen species in phagocytic cells and VSMCs during atherosclerotic process, we hypothesized that 8-OHdG could have anti-atherosclerotic action and tested this hypothesis in an experimentally induced atherosclerosis in mice. Partially ligated ApoE knockout (KO) mice, a more physiologically relevant model of low and oscillatory flow, developed an advanced lesion in 2 weeks and orally administered 8-OHdG significantly reduced plaque formation along with reduced superoxide formation, monocyte/macrophage infiltration, and extracellular matrix (ECM) accumulation. The effects of 8-OHdG observed in primary VSMCs were consistent with the in vivo effect of 8-OHdG which were inhibitory to angiotensin II or platelet-derived growth factor-induced production of reactive oxygen species, proliferation, migration, and ECM production. Also, angiotensin II-induced Rac1 activity in VSMCs were significantly inhibited by 8-OHdG and transfection of constitutively active Rac1 reversed the inhibitory effect of 8-OHdG on VSMC activation. Molecular docking study showed that 8-OHdG stabilizes Rac1-GEF complex indicating the physical contact of 8-OHdG with Rac1. These findings highly suggest that the anti-atherosclerotic effect of 8-OHdG is mediated by inhibition of Rac1 activity. In conclusion, our results showed a novel action of orally active 8-OHdG in suppressing atherosclerotic plaque formation in vivo and VSMC activation in vitro through inhibition of Rac1, which emphasizes a new therapeutic avenue to benefit atherosclerosis.
    Free Radical Biology and Medicine 04/2012; · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liquid crystalline behavior of dimesogenic compounds opens a new area of research in liquid crystals science. The term ‘dimesogenic compounds’ describes thermotropic compounds consisting of two mesogenic units linked through a central spacer such as polymethylene and oligosiloxyl groups. The two mesogenic units may or may not be identical. When they are identical, they are occasionally called twin or siamese compounds.
    Journal of Industrial and Engineering Chemistry - J IND ENG CHEM. 01/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3-Morpholinosydnonimine (SIN-1) affects vascular smooth muscle cell migration and proliferation, processes essential for atherosclerosis. However, the mechanism by which SIN-1 exerts these effects has not been elucidated. We used 2-DE followed by MALDI-TOF/TOF MS to identify responses in protein expression to SIN-1 in rat aortic smooth muscle. Platelet-derived growth factor-BB increased cell migration and proliferation in rat aortic smooth muscle cells, and subsequent SIN-1 treatment inhibited it. Administration of SIN-1 in vivo attenuated neointima formation in balloon-injured rat carotid arteries. Proteomic analysis showed that glutathione peroxidase and 40S ribosomal protein S12 were differentially expressed in aortic strips exposed to SIN-1. Expression of annexin A2 was decreased by SIN-1. Platelet-derived growth factor-BB-induced cell migration was increased and inhibited in rat aortic smooth muscle cells with overexpression and knockdown of annexin A2 gene, respectively. The expression of annexin A2 was increased in vascular neointima compared with the intact control, which was inhibited by SIN-1 treatment. These results demonstrate that SIN-1 may attenuate vascular neointima formation by inhibiting annexin A2-mediated migration. Therefore, annexin A2 may be a potential target for therapeutic strategies for atherosclerosis.
    Proteomics 01/2011; 11(2):193-201. · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The roles of Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP-2) and its signaling in atherosclerosis have not been explored. Therefore, we investigated the roles of SHP-2 in the movement of rat aortic smooth muscle cells (RASMCs) and in the neointima formation of the carotid artery. Platelet-derived growth factor (PDGF)-BB (1 - 20 ng/ml) increased the activity and phosphorylation of SHP-2 and migration in RASMCs and these were suppressed by SHP-2 inhibitor NSC-87877 (30 µM) and small interfering RNA of SHP-2. PDGF-BB increased the phosphorylations of spleen tyrosine kinase (Syk) and p38 mitogen-activated protein kinase (MAPK), which were recovered by inhibition of SHP-2. Moreover, PDGF-BB increased the levels of reactive oxygen species (ROS) and ROS inhibitors decreased PDGF-BB-increased migration. Treatment of RASMCs with H(2)O(2) (100 µM) increased cell migration and SHP-2 phosphorylation and also enhanced the phosphorylation levels of Syk and p38 MAPK. Oral administration of NSC-87877 (10 mg/kg) significantly suppressed neointima formation in a rat model of carotid artery injury. These results suggest that the activity of SHP-2 is controlled by ROS and is positively involved in the regulation of PDGF-BB-induced RASMC migration and neointima formation.
    Journal of Pharmacological Sciences 01/2011; 115(2):164-75. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We characterized a Kunitz-type protease inhibitor (Gm KTPI) obtained from the hemolymph of Galleria mellonella larvae immunized with Escherichia coli. The structural analysis of the cloned cDNA showed that it consists of 56 residues derived from the precursor of 75 amino acids. The peptide was constitutively produced in the fat bodies, but not in the midgut nor the integument of larvae. In our analysis of stage-dependent expression, its transcript was detected within the midgut, the fat bodies and the integument of the prepupae, which undergo tissue remodeling. The inhibition assays showed that Gm KTPI was capable of inhibiting only the trypsin-like activity of the larval midgut extracts. Furthermore, it was determined that Gm KTPI induced the activation of extracellular signal-regulated kinase (ERK) in the fat bodies and integument cells, and this kinase is known to perform a central role in cell proliferation signaling. Its effect on ERK activation was also verified in a control experiment using a human endothelial cell culture. Collectively, it was suggested that Gm KTPI might be responsible for the protection of other tissues against proteolytic attack by trypsin-like protease(s) from larval midgut during metamorphosis, and might play a role in the proliferation of cells in the fat body and integument.
    Insect biochemistry and molecular biology 12/2010; 40(12):873-82. · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While intercellular adhesion molecule-1 (ICAM-1) is a transmembrane protein, two types of extracellular ICAM-1 have been detected in cell culture supernatants as well as in the serum: a soluble form of ICAM-1 (sICAM-1) and a membranous form of ICAM-1 (mICAM-1) associated with exosomes. Previous observations have demonstrated that sICAM-1 cannot exert potent immune modulatory activity due to its low affinity for leukocyte function-associated antigen-1 (LFA-1) or membrane attack complex-1. In this report, we initially observed that human cancer cells shed mICAM-1(+)-exosomes but were devoid of vascular cell adhesion molecule-1 and E-selectin. We demonstrate that mICAM-1 on exosomes retained its topology similar to that of cell surface ICAM-1, and could bind to leukocytes. In addition, we show that exosomal mICAM-1 exhibits potent anti-leukocyte adhesion activity to tumor necrosis factor-alpha-activated endothelial cells compared to that of sICAM-1. Taken together with previous findings, our results indicate that mICAM-1 on exosomes exhibits potent immune modulatory activity.
    Biochemical and Biophysical Research Communications 06/2010; 397(2):251-6. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase (NOS) activity, is known to play important roles in modulating both NO and superoxide production during vascular diseases such as atherosclerosis. However, the role of BH4 in functions of vascular smooth muscle cells is not fully known. In this study, we tested the effects of BH4 and dihydrobiopterin (BH2), a BH4 precursor, on migration and proliferation in response to platelet-derived growth factor-BB (PDGF-BB) in rat aortic smooth muscle cells (RASMCs). Cell migration and proliferation were measured using a Boyden chamber and a 5-bromo-2'-deoxyuridine incorporation assay, respectively, and these results were confirmed with an ex vivo aortic sprout assay. Cell viability was examined by 2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assays. BH4 and BH2 decreased PDGF-BB-induced cell migration and proliferation in a dose-dependent manner. The inhibition of cell migration and proliferation by BH4 and BH2 was not affected by pretreatment with N(G)-nitro-L-arginine methyl ester, a NOS inhibitor. Moreover, the sprout outgrowth formation of aortic rings induced by PDGF-BB was inhibited by BH4 and BH2. Cell viability was not inhibited by BH4 and BH2 treatment. The present results suggest that BH4 and BH2 may inhibit PDGF-stimulated RASMC migration and proliferation via the NOS-independent pathway. Therefore, BH4 and its derivative could be useful for the development of a candidate molecule with an NO-independent anti-atherosclerotic function.
    Korean Journal of Physiology and Pharmacology 06/2010; 14(3):177-83. · 1.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle atrophy is a common phenomenon during the prolonged muscle disuse caused by cast immobilization, extended aging states, bed rest, space flight, or other factors. However, the cellular mechanisms of the atrophic process are poorly understood. In this study, we investigated the involvement of mitogen-activated protein kinase (MAPK) in the expression of muscle-specific RING finger 1 (MuRF1) during atrophy of the rat gastrocnemius muscle. Histological analysis revealed that cast immobilization induced the atrophy of the gastrocnemius muscle, with diminution of muscle weight and cross-sectional area after 14 days. Cast immobilization significantly elevated the expression of MuRF1 and the phosphorylation of p38 MAPK. The starvation of L6 rat skeletal myoblasts under serum-free conditions induced the phosphorylation of p38 MAPK and the characteristics typical of cast-immobilized gastrocnemius muscle. The expression of MuRF1 was also elevated in serum-starved L6 myoblasts, but was significantly attenuated by SB203580, an inhibitor of p38 MAPK. Changes in the sizes of L6 myoblasts in response to starvation were also reversed by their transfection with MuRF1 small interfering RNA or treatment with SB203580. From these results, we suggest that the expression of MuRF1 in cast-immobilized atrophy is regulated by p38 MAPK in rat gastrocnemius muscles.
    Korean Journal of Physiology and Pharmacology 12/2009; 13(6):491-6. · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify the new targets for hypertension, we analyzed the protein expression profiles of aortic smooth muscle in spontaneously hypertensive rats (SHR) of various ages during the development of hypertension, as well as in age-matched normotensive Wistar-Kyoto (WKY) rats, using a proteomic analysis. The expressions of seven proteins were altered in SHR compared with WKY rats. Of these proteins, NADH dehydrogenase 1alpha, GSTomega1, peroxi-redoxin I and transgelin were upregulated in SHR compared with WKY rats. On the other hand, the expression of HSP27 and Ran protein decreased in SHR. The diminution of dihydrobiopterin reductase, an enzyme located in the regeneration pathways of tetrahydrobiopterin (BH4), was also prominent in SHR. The results from a PCR analysis revealed that the expression of BH4 biosynthesis enzymes - GTP cyclohydrolase-1 and sepiapterin reductase - decreased and increased, respectively, in SHR compared with WKY rats. The level of BH4 was less in aortic strips from SHR than from WKY rats. Moreover, treatment with BH4 inhibited aortic smooth muscle contraction induced by serotonin. These results suggest that the deficiency in BH4 regeneration produced by diminished dihydrobiopterin reductase expression is involved in vascular disorders in hypertensive rats.
    Proteomics 10/2009; 9(21):4851-8. · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We determined the action mechanism of cordycepin, a major bioactive component of Cordyceps militaris, on responses of rat aortic smooth muscle cells (RASMCs) and on vascular disorders, especially neointimal formation. Cordycepin inhibited platelet-derived growth factor-BB (PDGF-BB)-induced RASMCs migration and proliferation in a dose-dependent manner. However, pre-treatment with N(omega)-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor, and 1,3-dipropyl-8-sulphophenylxanthine (DPSPX), an A(1)/A(2) adenosine-receptor antagonist, abolished the inhibitory role of cordycepin. Cordycepin suppressed the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and heat shock protein 27 (Hsp27), but not that of extracellular signal-regulated kinase (ERK) 1/2 in RASMCs stimulated by PDGF-BB. The production of reactive oxygen species (ROS), O(2)(-) and H(2)O(2), induced by PDGF-BB was abolished by the treatment of cordycepin. Moreover, the sprout outgrowth of aortic rings by PDGF-BB was inhibited by cordycepin. In vivo neointimal formation evoked by balloon-injury was significantly attenuated by the administration of cordycepin. These results demonstrate that cordycepin may exert inhibitory effects on PDGF-BB-induced migration and proliferation via interfering with adenosine receptor-mediated NOS pathways, thus resulting in the attenuation of neointima formation. In conclusion, cordycepin may be a potent, promising anti-atherosclerosis agent.
    Journal of Pharmacological Sciences 04/2009; 109(3):403-12. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Olibanum (Boswellia serrata) has been shown to have anti-inflammatory, anti-arthritic and anti-cancer effects. This study determined the role of a water extract of olibanum in platelet-derived growth factor (PDGF)-stimulated proliferation and migration of rat aortic smooth muscle cells (RASMCs). PDGF-BB induced the migration and proliferation of RASMCs that were inhibited by olibanum extract in a dose-dependent manner. The PDGF-BB-increased phosphorylation of p38 mitogen-activated protein kinase (MAPK); the heat shock protein (Hsp) 27 was significantly inhibited by the olibanum extract. The effects of PDGF-BB-induced extracellular signal-regulated kinase1/2 was not altered by the olibanum extract. Treatment with olibanum extract inhibited PDGF-BB-stimulated sprout out growth of aortic rings. These results suggest that the water extract of olibanum inhibits PDGF-BB-stimulated migration and proliferation in RASMCs as well as sprout out growth, which may be mediated by the inhibition of the p38 MAPK and Hsp27 pathways.
    Korean Journal of Physiology and Pharmacology 04/2009; 13(2):107-13. · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cofilin, an actin-binding protein, is essential for a variety of cell responses. In this study, we investigated the correlation between proliferation and cofilin phosphorylation in response to platelet-derived growth factor (PDGF) in rat aortic smooth muscle cells (RASMCs). The phosphorylation of cofilin and activity of mitogen-activated protein kinase (MAPK) were measured by Western analyses and proliferation in RASMCs was measured by BrdU incorporation assays. The phosphorylation of cofilin in RASMCs was decreased by PDGF-BB treatment at 10 min, but recovered to the level of the quiescent state at 60 min. PDGF-BB-induced dephosphorylation of cofilin was inhibited by pretreatment with piceatannol (a spleen tyrosine kinase [Syk] inhibitor), PP2 (a Src inhibitor), or SP600125 (a c-Jun N-terminal kinase [JNK] inhibitor), but not by PD98059, an inhibitor of extracellular signal-regulated kinase 1/2. PDGF-BB increased JNK activity and proliferation, and these responses were suppressed by kinase inhibitors and small interference RNA-cofilin. The results suggest that PDGF-BB-induced dephosphorylation of cofilin can be promoted via the JNK pathway, which is regulated by both Syk and Src kinases and that cofilin dephosphorylation may be involved in PDGF-BB-induced RASMC proliferation.
    Journal of Pharmacological Sciences 12/2008; 108(3):372-9. · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ref-1) in vascular smooth muscle cells has yet to be clearly elucidated. Therefore, we attempted to determine the roles of Ref-1 in the migration induced by platelet-derived growth factor (PDGF)-BB and in its signaling in rat aortic smooth muscle cells (RASMCs). Cellular migration, superoxide (O(2)(-*)) production, Rac-1 activity, and neointima formation were determined in cells transfected with adenoviruses encoding for Ref-1 (AdRef-1) and small interference RNA of Ref-1. Overexpression of Ref-1 induced by treatment with RASMCs coupled with AdRef-1 inhibited the migration induced by PDGF-BB. PDGF-BB also increased the phosphorylation of the PDGFbeta receptor, spleen tyrosine kinase (Syk), mitogen-activated protein kinase, and heat shock protein 27, but these increases were significantly inhibited by AdRef-1 treatment. PDGF-BB increased O(2)(-*) production and Rac-1 activity, and these were diminished in cells transfected with AdRef-1. In contrast, RASMC migration, phosphorylation of Syk and O(2)(-*) production in response to PDGF-BB were increased by the knock down of Ref-1 with small interference RNA. The phosphorylation of PDGFbeta receptor in response to PDGF-BB was inhibited completely by the Syk inhibitor and was partly attenuated by a NADPH oxidase inhibitor. PDGF-BB increased the sprout outgrowth of the aortic ring ex vivo, which was inhibited in the AdRef-1-infected RASMCs as compared with the controls. Balloon injury-induced neointimal formation was significantly attenuated by the gene transfer of AdRef-1. These results indicate that Ref-1 inhibits the PDGF-mediated migration signal via the inhibition of reactive oxygen species-mediated Syk activity in RASMCs.
    Circulation Research 12/2008; 104(2):219-27, 5p following 227. · 11.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soluble intercellular adhesion molecule-1 (sICAM-1), a circulating form of ICAM-1, has been known to be involved in the development of vascular diseases that are associated with vascular smooth muscle cell migration, such as hypertension and atherosclerosis. Here we investigated the contributions of sICAM-1 in promoting vascular migration in rat aortic smooth muscle cells (RASMCs). sICAM-1 increased RASMC migration, and this response was stronger in spontaneously hypertensive rats (SHRs) than in Wistar Kyoto (WKY) rats. The CD11a, CD11b, and CD18 subunits of ICAM-1 receptors were expressed in both SHRs and WKY rats; however, the expression levels of CD18 and CD11b were greater in SHRs than in WKY rats. The neutralization of the receptor subunits with anti-CD11a and -CD18 antibodies abolished the sICAM-1-increased migration. The treatment of inhibitors of spleen tyrosine kinase (Syk) and p38 mitogen-activated protein kinase suppressed the sICAM-1-stimulated migration of RASMCs. sICAM-1 also increased the sprout formation in aortic rings on Matrigel, and this response was inhibited by treatment with these inhibitors. The results suggest that sICAM-1 play crucial roles in vascular cell function through Syk pathways, and that the altered responses of sICAM-1 in RASMCs from SHRs may be mediated by the increased expression of the CD18 receptor.
    European Journal of Pharmacology 02/2008; 579(1-3):260-8. · 2.59 Impact Factor

Publication Stats

390 Citations
101.82 Total Impact Points

Institutions

  • 2007–2013
    • Konkuk University
      • School of Medicine
      Sŏul, Seoul, South Korea
  • 2009–2012
    • Hoseo University
      • College of Natural Sciences
      Onyang, South Chungcheong, South Korea
  • 2011
    • Hoseo University
      Onyang, South Chungcheong, South Korea
  • 2010
    • Pohang University of Science and Technology
      • Department of Life Sciences
      Andong, North Gyeongsang, South Korea
  • 2004
    • Seoul National University
      • College of Pharmacy
      Seoul, Seoul, South Korea
  • 2002–2004
    • Kyung Hee University
      • • Graduate School of East-West Medical Science
      • • Graduate School of East-West Medical Science
      Sŏul, Seoul, South Korea