Tiffany Wu

University of Alabama at Birmingham, Birmingham, AL, United States

Are you Tiffany Wu?

Claim your profile

Publications (10)120.09 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies implicate death receptor 6 (DR6) in an amyloid precursor protein (APP)-dependent pathway regulating developmental axon pruning, and in a pruning pathway operating during plastic rearrangements in adult brain. DR6 has also been suggested to mediate toxicity in vitro of Aβ peptides derived from APP. Given the link between APP, Aβ, and Alzheimer's disease (AD), these findings have raised the possibility that DR6 contributes to aspects of neurodegeneration in AD. To test this possibility, we have used mouse models to characterize potential function(s) of DR6 in the adult CNS and in AD-related pathophysiology. We show that DR6 is broadly expressed within the adult CNS and regulates the density of excitatory synaptic connections onto pyramidal neurons in a genetic pathway with APP. DR6 knock-out also gives rise to behavioral abnormalities, some of which are similar to those previously documented in APP knock-out animals. However, in two distinct APP transgenic models of AD, we did not observe any alteration in the formation of amyloid plaques, gliosis, synaptic loss, or cognitive behavioral deficits with genetic deletion of DR6, though we did observe a transient reduction in the degree of microglial activation in one model. Our results support the view that DR6 functions with APP to modulate synaptic density in the adult CNS, but do not provide evidence for a role of DR6 in the pathophysiology of AD.
    Journal of Neuroscience 05/2014; 34(19):6425-37. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While antagonists to GluN2B-containing N-Methyl-d-Aspartate receptors (NMDARs) have been widely considered to be neuroprotective under certain pathological conditions, their immediate and lasting impacts on synaptic, circuit, and cognitive functions are poorly understood. In hippocampal slices, we found that the GluN2B-selective antagonist Ro25-6981 (Ro25) reduced synaptic NMDAR responses and consequently neuronal output in a subpopulation of GABAergic interneurons, but not pyramidal neurons. Consistent with these effects, Ro25 reduced GABAergic responses in pyramidal neurons and hence could affect circuit functions by altering the excitation/inhibition balance in the brain. In slices from Ts65Dn mice, a Down syndrome model with excess inhibition and cognitive impairment, acutely applied Ro25 rescued long-term potentiation (LTP) and gamma oscillation deficits, while prolonged dosing induced persistent rescue of LTP. In contrast, Ro25 did not impact LTP in wt mice but reduced gamma oscillations both acutely and following prolonged treatment. While acute Ro25 treatment impaired memory performance in wt mice, memory deficits in Ts65Dn mice were unchanged. Thus, GluN2B-NMDARs contribute to the excitation/inhibition balance via impacts on interneurons, and blocking GluN2B-NMDARs can alter functions that depend on this balance, including synaptic plasticity, gamma oscillations, and memory. That prolonged GluN2B antagonism leads to persistent changes in synaptic and circuit functions and that the influence of GluN2B antagonism differs between wild-type and disease model mice provides critical insight into the therapeutic potential and possible liabilities of GluN2B antagonists.Neuropsychopharmacology accepted article preview online, 22 January 2013; doi:10.1038/npp.2013.19.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 01/2013; · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.
    Cell 06/2011; 145(6):863-74. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-β peptide (Aβ) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aβ. However, the mechanisms by which Aβ, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aβ and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aβ and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aβ, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.
    Journal of Neuroscience 01/2011; 31(2):700-11. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.
    Journal of Neuroscience 03/2009; 29(7):1977-86. · 6.91 Impact Factor
  • Alzheimer's and Dementia 07/2008; 4(4). · 17.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The enkephalin signaling pathway regulates various neural functions and can be altered by neurodegenerative disorders. In Alzheimer's disease (AD), elevated enkephalin levels may reflect compensatory processes or contribute to cognitive impairments. To differentiate between these possibilities, we studied transgenic mice that express human amyloid precursor protein (hAPP) and amyloid-beta (Abeta) peptides in neurons and exhibit key aspects of AD. Met-enkephalin levels in neuronal projections from the entorhinal cortex and dentate gyrus (brain regions important for memory that are affected in early stages of AD) were increased in hAPP mice, as were preproenkephalin mRNA levels. Genetic manipulations that exacerbate or prevent excitotoxicity also exacerbated or prevented the enkephalin alterations. In human AD brains, enkephalin levels in the dentate gyrus were also increased. In hAPP mice, enkephalin elevations correlated with the extent of Abeta-dependent neuronal and behavioral alterations, and memory deficits were reduced by irreversible blockade of mu-opioid receptors with the antagonist beta-funaltrexamine. We conclude that enkephalin elevations may contribute to cognitive impairments in hAPP mice and possibly in humans with AD. The therapeutic potential of reducing enkephalin production or signaling merits further exploration.
    Journal of Neuroscience 06/2008; 28(19):5007-17. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many potential treatments for Alzheimer's disease target amyloid-beta peptides (Abeta), which are widely presumed to cause the disease. The microtubule-associated protein tau is also involved in the disease, but it is unclear whether treatments aimed at tau could block Abeta-induced cognitive impairments. Here, we found that reducing endogenous tau levels prevented behavioral deficits in transgenic mice expressing human amyloid precursor protein, without altering their high Abeta levels. Tau reduction also protected both transgenic and nontransgenic mice against excitotoxicity. Thus, tau reduction can block Abeta- and excitotoxin-induced neuronal dysfunction and may represent an effective strategy for treating Alzheimer's disease and related conditions.
    Science 06/2007; 316(5825):750-4. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The authors sought to examine the therapeutic efficacy of motor cortex stimulation (MCS) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaques and to characterize therapeutic differences with varying modes, frequencies, and durations of stimulation. Motor cortex stimulation was delivered at currents below motor threshold and at frequencies between 5 and 150 Hz through epidural electrodes over the primary motor cortex. The animals were studied during and without MCS using video analysis, activity logging, and food retrieval tasks. Animals were examined using two different stimulation protocols. The first protocol consisted of 1 hour of MCS therapy daily. The second protocol exposed the animal to continuous MCS for more than 24 hours with at least 2 weeks between MCS treatments. Daily MCS yielded no consistent change in symptoms, but MCS at 2-week intervals resulted in significant increases in activity. Effects of biweekly MCS disappeared, however, within 24 hours of the onset of continuous MCS. In this study, MCS only temporarily reduced the severity of MPTP-induced parkinsonism.
    Journal of Neurosurgery 05/2007; 106(4):695-700. · 3.15 Impact Factor
  • Article: P4-314
    Alzheimers & Dementia - ALZHEIMERS DEMENT. 01/2006; 2(3).

Publication Stats

794 Citations
120.09 Total Impact Points


  • 2011
    • University of Alabama at Birmingham
      • Center for Neurodegeneration and Experimental Therapeutics
      Birmingham, AL, United States
  • 2007–2009
    • University of California, San Francisco
      • Department of Neurology
      San Francisco, California, United States