Francis-André Wollman

French National Centre for Scientific Research, Lutetia Parisorum, Île-de-France, France

Are you Francis-André Wollman?

Claim your profile

Publications (54)306.73 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.
    The Plant Cell 01/2014; · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.
    The Plant Cell 01/2014; · 9.25 Impact Factor
  • Source
    Dataset: SuppMRL1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.
    Nature Communications 06/2013; 4:1954. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondrus crispus is a species of red algae that grows on rocks from the middle intertidal into the subtidal zones of the North Atlantic coasts. As such, it has to cope with strongly variable abiotic conditions. Here we studied the response of the photosynthetic apparatus of this red alga to illumination. We found that, as previously described in the case of the unicellular alga Rhodella violacea (E. Delphin et al., Plant Physiol. 118 (1998) 103-113), a single multi-turnover saturating pulse of light is sufficient to induce a strong quenching of fluorescence. To elucidate the mechanisms underlying this fluorescence quenching, we combined room temperature and 77K fluorescence measurements with absorption spectroscopy to monitor the redox state of the different electron carriers in the chain. In addition, we studied the dependence of these various observables upon the excitation wavelength. This led us to identify energy spill-over from Photosystem II to Photosystem I rather than a qE-type non-photochemical quenching as the major source of fluorescence quenching that develops upon a series of 200 ms pulses of saturating light results, in line with the conclusion of Ley and Butler (Biochim. Biophys. Acta 592 (1980) 349-363) from their studies of the unicellular red alga P. cruentum. In addition, we show that the onset of this spill-over is triggered by the reduction of the plastoquinone pool.
    Biochimica et Biophysica Acta 04/2013; · 4.66 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient and limited. Growth is inhibited in zinc-limited and zinc toxic cells relative to zinc-replete cells, while zinc-deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc-deficiency, likely due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3 and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to Cu limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc deficient cells are functionally copper deficient, even though they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester Cu in a bio-unavailable form, perhaps to prevent mis-metallation of critical zinc sites.
    Journal of Biological Chemistry 02/2013; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II.
    The Plant Cell 02/2013; · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on previous comparative genomic analyses, a set of nearly 600 polypeptides, of which ~300 have unknown physiological function, was identified that is present in green algae and flowering and nonflowering plants, but not present (or highly diverged) in non-photosynthetic organisms. The gene encoding one of these GreenCut proteins, CPLD38, is in the same operon as ndhL in most cyanobacteria; NdhL is part of a complex essential for cyanobacterial respiration. A cpld38 mutant of Chlamydomonas reinhardtii did not grow on minimal medium, was high light sensitive under photoheterotrophic conditions, had lower accumulation of photosynthetic complexes, reduced photosynthetic electron flow to P700+, and reduced photochemical efficiency of photosystem II; these phenotypes were rescued by a wild-type copy of CPLD38. Biophysical and biochemical analyses demonstrated that cytochrome b6f function was severely compromised, and levels of transcripts and polypeptide subunits associated with the cytochrome b6f complex were also significantly lower in the mutant; the subunits of the cytochrome b6f complex turned over much more rapidly in mutant than in wild-type cells. Interestingly, PTOX2 and NDA2, two major proteins involved in chlororespiration, were more than 5-fold higher in mutant relative to wild-type cells, suggesting a shift from photosynthesis toward chlororespiratory metabolism in mutant cells, which is supported by experiments that quantify the reduction state of the plastoquinone pool. These findings support the hypothesis that CPLD38 impacts the stability of the cytochrome b6f complex and may play a key role in balancing redox inputs to the quinone pool from photosynthesis and chlororespiration.
    Journal of Biological Chemistry 01/2013; · 4.65 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By homology with the unique plastid terminal oxidase (PTOX) found in plants, two genes encoding oxidases have been found in the Chlamydomonas genome, PTOX1 and PTOX2. Here we report the identification of a knockout mutant of PTOX2. Its molecular and functional characterization demonstrates that it encodes the oxidase most predominantly involved in chlororespiration in this algal species. In this mutant, the plastoquinone pool is constitutively reduced under dark-aerobic conditions, resulting in the mobile light-harvesting complexes being mainly, but reversibly, associated with photosystem I. Accordingly, the ptox2 mutant shows lower fitness than wild type when grown under phototrophic conditions. Single and double mutants devoid of the cytochrome b(6)f complex and PTOX2 were used to measure the oxidation rates of plastoquinols via PTOX1 and PTOX2. Those lacking both the cytochrome b(6)f complex and PTOX2 were more sensitive to light than the single mutants lacking either the cytochrome b(6)f complex or PTOX2, which discloses the role of PTOX2 under extreme conditions where the plastoquinone pool is overreduced. A model for chlororespiration is proposed to relate the electron flow rate through these alternative pathways and the redox state of plastoquinones in the dark. This model suggests that, in green algae and plants, the redox poise results from the balanced accumulation of PTOX and NADPH dehydrogenase.
    Proceedings of the National Academy of Sciences 12/2011; 108(51):20820-5. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After endosymbiosis, organelles lost most of their initial genome. Moreover, expression of the few remaining genes became tightly controlled by the nucleus through trans-acting protein factors that are required for post-transcriptional expression (maturation/stability or translation) of a single (or a few) specific organelle target mRNA(s). Here, we characterize the nucleus-encoded TDA1 factor, which is specifically required for translation of the chloroplast atpA transcript that encodes subunit α of ATP synthase in Chlamydomonas reinhardtii. The sequence of TDA1 contains eight copies of a degenerate 38-residue motif, that we named octotrico peptide repeat (OPR), which has been previously described in a few other trans-acting factors targeted to the C. reinhardtii chloroplast. Interestingly, a proportion of the untranslated atpA transcripts are sequestered into high-density, non-polysomic, ribonucleoprotein complexes. Our results suggest that TDA1 has a dual function: (i) trapping a subset of untranslated atpA transcripts into non-polysomic complexes, and (ii) translational activation of these transcripts. We discuss these results in light of our previous observation that only a proportion of atpA transcripts are translated at any given time in the chloroplast of C. reinhardtii.
    The Plant Journal 05/2011; 67(6):1055-66. · 6.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central in respiration or photosynthesis, the cytochrome bc(1) and b(6)f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc(1) have failed. The rapid proteolytic degradation of b(6)f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b(6)f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis.
    Nature Communications 05/2011; 2:301. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Organelle gene expression is characterized by nucleus-encoded trans-acting factors that control posttranscriptional steps in a gene-specific manner. As a typical example, in Chlamydomonas reinhardtii, expression of the chloroplast petA gene encoding cytochrome f, a major subunit of the cytochrome b(6)f complex, depends on MCA1 and TCA1, required for the accumulation and translation of the petA mRNA. Here, we show that these two proteins associate in high molecular mass complexes that also contain the petA mRNA. We demonstrate that MCA1 is degraded upon interaction with unassembled cytochrome f that transiently accumulates during the biogenesis of the cytochrome b(6)f complex. Strikingly, this interaction relies on the very same residues that form the repressor motif involved in the Control by Epistasy of cytochrome f Synthesis (CES), a negative feedback mechanism that downregulates cytochrome f synthesis when its assembly within the cytochrome b(6)f complex is compromised. Based on these new findings, we present a revised picture for the CES regulation of petA mRNA translation that involves proteolysis of the translation enhancer MCA1, triggered by its interaction with unassembled cytochrome f.
    The Plant Cell 01/2011; 23(1):333-49. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.
    Photosynthesis Research 11/2010; 106(1-2):3-17. · 3.15 Impact Factor
  • Source
    Biochimica Et Biophysica Acta-bioenergetics - BBA-BIOENERGETICS. 01/2010; 1797:19-19.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identify and functionally characterize MRL1, a conserved nuclear-encoded regulator of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. The nonphotosynthetic mrl1 mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase/oxygenase, and the resulting block in electron transfer is partially compensated by redirecting electrons toward molecular oxygen via the Mehler reaction. This allows continued electron flow and constitutive nonphotochemical quenching, enhancing cell survival during illumination in spite of photosystem II and photosystem I photoinhibition. The mrl1 mutant transcribes rbcL normally, but the mRNA is unstable. The molecular target of MRL1 is the 5 ' untranslated region of rbcL. MRL1 is located in the chloroplast stroma, in a high molecular mass complex. Treatment with RNase or deletion of the rbcL gene induces a shift of the complex toward lower molecular mass fractions. MRL1 is well conserved throughout the green lineage, much more so than the 10 other pentatricopeptide repeat proteins found in Chlamydomonas. Depending upon the organism, MRL1 contains 11 to 14 pentatricopeptide repeats followed by a novel MRL1-C domain. In Arabidopsis thaliana, MRL1 also acts on rbcL and is necessary for the production/stabilization of the processed transcript, presumably because it acts as a barrier to 5 ' >3 ' degradation. The Arabidopsis mrl1 mutant retains normal levels of the primary transcript and full photosynthetic capacity.
    The Plant Cell 01/2010; 22(1):234-48. · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identify and functionally characterize MRL1, a conserved nuclear-encoded regulator of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. The nonphotosynthetic mrl1 mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase/oxygenase, and the resulting block in electron transfer is partially compensated by redirecting electrons toward molecular oxygen via the Mehler reaction. This allows continued electron flow and constitutive nonphotochemical quenching, enhancing cell survival during illumination in spite of photosystem II and photosystem I photoinhibition. The mrl1 mutant transcribes rbcL normally, but the mRNA is unstable. The molecular target of MRL1 is the 59 untranslated region of rbcL. MRL1 is located in the chloroplast stroma, in a high molecular mass complex. Treatment with RNase or deletion of the rbcL gene induces a shift of the complex toward lower molecular mass fractions. MRL1 is well conserved throughout the green lineage, much more so than the 10 other pentatricopeptide repeat proteins found in Chlamydomonas. Depending upon the organism, MRL1 contains 11 to 14 pentatricopeptide repeats followed by a novel MRL1-C domain. In Arabidopsis thaliana, MRL1 also acts on rbcL and is necessary for the production/stabilization of the processed transcript, presumably because it acts as a barrier to 59>39 degradation. The Arabidopsis mrl1 mutant retains normal levels of the primary transcript and full photosynthetic capacity. INTRODUCTION
    The Plant Cell 01/2010; · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here, we describe a new imaging setup able to assess in vivo photosynthetic activity. The system specifically measures time-resolved chlorophyll fluorescence in response to light. It is composed of a fast digital camera equipped with a wide-angle lens for the analysis of samples up to 10 x 10 cm, i.e. entire plants or petri dishes. In the choice of CCD, we have opted for a 12-bits high frame rate [150 fps (frames per second)] at the expense of definition (640 x 480 pixels). Although the choice of digital camera is always a compromise between these two related features, we have designed a flexible system allowing the fast sampling of images (down to 100 micros) with a maximum spatial resolution. This image readout system, synchronized with actinic light and saturating pulses, allows a precise determination of F(0) and F(M), which is required to monitor PSII activity. This new imaging system, together with image processing techniques, is useful to investigate the heterogeneity of photosynthetic activity within leaves or to screen large numbers of unicellular algal mutant colonies to identify those with subtle changes in photosynthetic electron flow.
    Photosynthesis Research 09/2009; 102(1):85-93. · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: State transitions correspond to a major regulation process for photosynthesis, whereby chlorophyll protein complexes responsible for light harvesting migrate between photosystem II and photosystem I in response to changes in the redox poise of the intersystem electron carriers. Here we disclose their physiological significance in Chlamydomonas reinhardtii using a genetic approach. Using single and double mutants defective for state transitions and/or mitochondrial respiration, we show that photosynthetic growth, and therefore biomass production, critically depends on state transitions in respiratory-defective conditions. When extra ATP cannot be provided by respiration, enhanced photosystem I turnover elicited by transition to state 2 is required for photosynthetic activity. Concomitant impairment of state transitions and respiration decreases the overall yield of photosynthesis, ultimately leading to reduced fitness. We thus provide experimental evidence that the combined energetic contributions of state transitions and respiration are required for efficient carbon assimilation in this alga.
    Proceedings of the National Academy of Sciences 09/2009; 106(37):15979-84. · 9.81 Impact Factor

Publication Stats

1k Citations
306.73 Total Impact Points

Institutions

  • 2001–2013
    • French National Centre for Scientific Research
      • Institut de Biologie Physico-Chimique
      Lutetia Parisorum, Île-de-France, France
  • 1982–2010
    • Institute of Physical and Chemical Biology
      Lutetia Parisorum, Île-de-France, France
  • 2009
    • University of Liège
      • Groupe de Génétique des microorganismes
      Liège, WAL, Belgium
  • 1996–2009
    • Pierre and Marie Curie University - Paris 6
      • Institut de Biologie Physico-Chimique (IBPC) (CNRS)
      Paris, Ile-de-France, France
  • 2008
    • University College London
      Londinium, England, United Kingdom
  • 2004
    • Université Paris-Sud 11
      • Institut de Biologie des Plantes
      Paris, Ile-de-France, France
  • 1984–1996
    • Institut Jacques Monod
      Lutetia Parisorum, Île-de-France, France