Rainer M Vallant

University of Innsbruck, Innsbruck, Tyrol, Austria

Are you Rainer M Vallant?

Claim your profile

Publications (19)46.51 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation of proteins is an important cellular regulatory process. The analysis of protein phosphorylation is challenging due to the high dynamic range and low abundance natures of phosphorylated species. Mass spectrometry (MS) of phosphopeptides obtained from tryptic protein digests is the method-of-choice for characterization of phosphorylated proteins. However, determination of phosphopeptides by MS represents a major challenge, especially in the presence of unmodified peptides. Due to lower ionization efficiency of phosphopeptides, as well as the fact that the stoichiometry of phosphorylation is often present at low relative abundance, efficient enrichment of the phosphorylated peptides prior to MS analysis is therefore of high demand. In addition, successful identification of peptides with different phosphorylation grades still remains challenging. This work presents a new strategy for enrichment and subsequent selective elution of multi-, mono- and nonphosphorylated peptides based on their difference in pI by using pH gradient elution in presence of different concentration of acetonitrile prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis (MALDI-MS). The developed protocol was successfully applied for α-casein tryptic digest and bovine serum albumin digest spiked with 9 synthetic phosphopeptides. Further selectivity for phosphopeptides was demonstrated by fractionation of peptides from a milk digest.
    Analytica chimica acta 01/2013; 761:92-101. · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In spite of the growing acceptance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analysis of a wide variety of compounds, including polymers and proteins, its use in analyzing low-molecular-weight molecules (<1000 m/z) is still limited. This is mainly due to the interference of matrix molecules in the low-mass range. Here the derivatized fullerenes covalently bound to silica particles with different pore sizes are applied as thin layer for laser desorption/ionization (LDI) mass spectrometric analysis. Thus, an interference of intrinsic matrix ions can be eliminated or minimized in comparison with the state-of-the-art weak organic acid matrices. The desorption/ionization ability of the developed fullerene-silica materials depends on the applied laser power, sample preparation and pore size of the silica particles. Thus, fullerene-silica serves as an LDI support for mass spectrometric analysis of molecules (<1500 Da). The performance of the fullerene-silica is demonstrated by the mass analysis of variety of small molecules such as carbohydrates, amino acids, peptides, phospholipids and drugs.
    Biological Mass Spectrometry 05/2010; 45(5):545-52. · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CE offers the advantage of flexibility and method development options. It excels in the area of separation of ions, chiral, polar and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coating is one of the approaches to prevent the adsorption phenomena and improve the repeatability of migration times and peak areas of these analytes. In this study, new capillary coatings consisting of (i) derivatized polystyrene nanoparticles and (ii) derivatized fullerenes were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run-to-run and batch-to-batch reproducibility (RSD of migration time < or = 0.5% for run-to-run and < or = 9.5% for batch-to-batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 to 10.0. The actual potential of the coated capillaries was tested by combining CE with MALDI-MS for analysing complex samples, such as peptides, whereas the overall performance of the CE-MALDI-MS system was investigated by analysing a five-protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss-Prot database in order to search for matching tryptic fragments using the MASCOT software. The sequence coverage of analysed proteins was between 36 and 68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS.
    Electrophoresis 02/2010; 31(4):618-29. · 3.26 Impact Factor
  • 05/2009: pages 421 - 456; , ISBN: 9780470447734
  • [Show abstract] [Hide abstract]
    ABSTRACT: SPE plays a crucial role in bioanalytical research. In the present work a novel fullerene(C60)-derivatised silica material is compared with octadecyl(C18) - and triaconthyl(C30)-silicas regarding recoveries of peptides and sequence coverage of HSA and fibrinogen digests. C30- and C60(30 nm)-SPE materials were found to be the two most prominent SPE materials. At low peptide concentrations C60-material prepared from a silica gel with a pore size of 30 nm has proven to be the best material with regards to recoveries. By increasing the amount of loaded peptides recoveries decrease due to its relative low binding capacity in contrast to C30-silica particles, showing no changes. The best sequence coverages of Aalpha- and Bbeta-chains of 20 pmol fibrinogen digest can also be achieved using these two SPE materials, C60 (30 nm) demonstrates an outstanding value of sequence coverage (62.15%) achieved for the gamma-chain. After nonenzymatic glycation the digests of fibrinogen and HSA were also separated. This makes the detection of a considerably higher number of glycated peptides possible compared to the unfractionated digests and the use of boronate affinity chromatography in the case of fibrinogen. For HSA, ten new sites of glycation at lysine and arginine residues have been explored. Using the detailed SPE/off-line MALDI method the glycation sites on fibrinogen are first described in this paper.
    Journal of Separation Science 02/2009; 32(2):295-308. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Graphitic nanofibres (GNFs), 100-200 nm in diameter and 5-20 microm in length have been modified in order to yield different affinities (Cu2+ and Fe3+ loaded immobilized metal affinity chromatography (IMAC) as well as cation and anion exchange materials) for the extraction of a range of biomolecules by their inherited hydrophobicity and the hydrophilic chemical functionalities, obtained by derivatization. Modified GNFs have for the first time been employed as carrier materials for protein profiling in material-enhanced laser desorption/ionization (MELDI) for the enrichment and screening of biofluids. For that purpose, the derivatized GNF materials have comprehensively been characterized regarding surface area, structural changes during derivatization, IMAC, as well as ion exchange and protein-loading capacity and recovery. GNF derivatives revealed high protein-binding capacity (2,000 microg ml(-1) for insulin) and ideal sensitivities, resulting in a detection limit of 50 fmol microl(-1) (for insulin), which is crucial for the detection of low abundant species in biological samples. Compared to other MELDI carrier materials, sensitivity was enhanced on GNF derivatives, which might be ascribed to the fact that GNFs support desorption and ionization mechanisms and by absorbing laser energy in addition to matrix.
    Amino Acids 09/2008; 37(2):341-8. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the bioanalytical era, novel nano-materials for the selective extraction, pre-concentration and purification of biomolecules prior to analysis are vital. Their application as affinity binding in this regard is needed to be authentic. We report here the comparative application of derivatised materials and surfaces on the basis of nano-crystalline diamond, carbon nanotubes and fullerenes for the analysis of marker peptides and proteins by material enhanced laser desorption ionisation mass spectrometry MELDI-MS. In this particular work, the emphasis is placed on the derivatization, termed as immobilised metal affinity chromatography (IMAC), with three different support materials, to show the effectiveness of MELDI technique. For the physicochemical characterisation of the phases, near infrared reflectance spectroscopy (NIRS) is used, which is a well-established method within the analytical chemistry, covering a wide range of applications. NIRS enables differentiation between silica materials and different fullerenes derivatives, in a 3-dimensional factor-plot, depending on their derivatizations and physical characteristics. The method offers a physicochemical quantitative description in the nano-scale level of particle size, specific surface area, pore diameter, pore porosity, pore volume and total porosity with high linearity and improved precision. The measurement takes only a few seconds while high sample throughput is guaranteed.
    Amino Acids 03/2008; 34(2):279-86. · 3.91 Impact Factor
  • Ref. No: Eur. Pat. Appl. (2008), EP 1973143 A1 20080924, Year: 01/2008
  • Ref. No: Eur. Pat. Appl. (2008), EP 1973142 AQ1 20080924, Year: 01/2008
  • Journal of Near Infrared Spectroscopy 01/2008; 16:211-221. · 1.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sample pretreatment is the most important procedure to remove the matrix for interfacing with mass spectrometry (MS). Additionally, for the samples with low concentration, the process of preconcentration is required before MS analysis. We have newly developed a solid-phase extraction stationary phase based on C60-fullerene covalently bound to silica for purification of biomolecules of different characteristics. Silica particles of different porosity are modified with aminopropyl linker and then covalently bound to C60-fullerenoacetic acid or C60-epoxyfullerenes. The developed materials have been successfully applied as an alternative to commercially available reversed-phase materials for solid-phase extraction. C60-fullerene silica is able to retain small and hydrophilic molecules like phosphopeptides, which can be easily lost by reversed-phase sorbents. The novel materials are applied for desalting and preconcentration of proteins and peptides, especially phosphopeptides. In addition, the C60-fullerene silica is applied for the solid-phase extraction of selected flavonoids with recoveries of approximately 99%. The recoveries are compared with the commercially available solid-phase extraction materials.
    Analytical Chemistry 12/2007; 79(21):8144-53. · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of numerous proteomics data and their results in literature reveal the importance and influence of proteins and peptides on human cell cycle. For instance, the proteomic profiling of biological samples, such as serum, plasma or cells, and their organelles, carried out by surface-enhanced laser desorption/ionization mass spectrometry, has led to the discovery of numerous key proteins involved in many biological disease processes. However, questions still remain regarding the reproducibility, bioinformatic artifacts and cross-validations of such experimental set-ups. The authors have developed a material-based approach, termed material-enhanced laser desorption/ionization mass spectrometry (MELDI-MS), to facilitate and improve the robustness of large-scale proteomic experiments. MELDI-MS includes a fully automated protein-profiling platform, from sample preparation and analysis to data processing involving state-of-the-art methods, which can be further improved. Multiplexed protein pattern analysis, based on material morphology, physical characteristics and chemical functionalities provides a multitude of protein patterns and allows prostate cancer samples to be distinguished from non-prostate cancer samples. Furthermore, MELDI-MS enables not only the analysis of protein signatures, but also the identification of potential discriminating peaks via capillary liquid chromatography mass spectrometry. The optimized MELDI approach offers a complete proteomics platform with improved sensitivity, selectivity and short sample preparation times.
    Expert Review of Proteomics 09/2007; 4(4):447-52. · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser desorption/ionization mass spectrometry (LDI-MS) is a widespread and powerful technique for mass analysis allowing the soft ionization of molecules such as peptides, proteins and carbohydrates. In many applications, an energy absorbing matrix has to be added to the analytes in order to protect them from being fragmented by direct laser beam. LDI-MS in conjunction with matrix is commonly referred as matrix-assisted LDI (MALDI). One of the striking disadvantages of this method is the desorption of matrix molecules, which causes interferences originating from matrix background ions in lower mass range (< 1000 Da). This has been led to the development of a variety of different carbon based LDI sample supports, which are capable of absorbing laser light and simultaneously transfering energy to the analytes for desorption. Furthermore carbon containing sample supports are used as carrier materials for the specific binding and preconcentration of molecules out of complex samples. Their subsequent analysis with MALDI mass spectrometry allows performing studies in metabolomics and proteomics. Finally a thin layer of carbon significantly improves sensitivity concerning detection limit. Analytes in low femtomole and attomole range can be detected in this regard. In the present article, these aspects are reviewed from patents where nano-based carbon materials are comprehensively utilized.
    Recent Patents on Nanotechnology 05/2007; 1(2):113-119. · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: At present, carbon nano-materials are being utilized in various procedures, especially in laser desorption/ionization-mass spectrometry (LDI-MS) for analyzing a range of analytes, which include peptides, proteins, metabolites, and polymers. Matrix-oriented LDI-MS techniques are very well established, with weak organic acids as energy-absorbing substances. Carbon materials, such as nano-tubes and fullerenes are being successfully applied in the small-mass range, where routine matrices have strong background signals. In addition, the role of carbon nano-materials is very well established in the fractionation and purification fields. Modified diamond powder and surfaces are utilized in binding peptides and proteins from complex biological fluids and analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Polylysine-coated diamond is used for solid-phase extraction to pre-concentrate DNA oligonucleotides. Graphite is useful for desalting, pre-concentration, and as energy-absorbing material (matrix) in desorption/ionization. Carbon nano-tubes in their different derivatized forms are used as matrix materials for the analysis of a range of analytes, such as carbohydrates, amino acids, peptides, proteins, and some environmental samples by LDI-MS. Fullerenes are modified in different ways to bind serum entities analyzed through MALDI/TOF-MS and are subsequently utilized in their identifications. In addition, the fullerenes are a promising matrix in LDI-MS, but improvements are needed.
    Journal of Biochemical and Biophysical Methods 04/2007; 70(2):319-28. · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fullerenes have attracted considerable attention in different fields of science since their discovery in 1985. Investigations of physical, chemical and biological properties of fullerenes have yielded promising information. It is inferred that size, hydrophobicity, three-dimensionality and electronic configurations make them an appealing subject in medicinal chemistry. Their unique carbon cage structure coupled with immense scope for derivatization make them a potential therapeutic agent. The study of biological applications has attracted increasing attention despite the low solubility of carbon spheres in physiological media. The fullerene family, and especially C60, has appealing photo, electrochemical and physical properties, which can be exploited in various medical fields. Fullerene is able to fit inside the hydrophobic cavity of HIV proteases, inhibiting the access of substrates to the catalytic site of enzyme. It can be used as radical scavenger and antioxidant. At the same time, if exposed to light, fullerene can produce singlet oxygen in high quantum yields. This action, together with direct electron transfer from excited state of fullerene and DNA bases, can be used to cleave DNA. In addition, fullerenes have been used as a carrier for gene and drug delivery systems. Also they are used for serum protein profiling as MELDI material for biomarker discovery. In this review we report the aspects of medicinal applications of fullerenes.
    International Journal of Nanomedicine 02/2007; 2(4):639-49. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 60]fullerene derivatives (dioctadecyl methano[60]fullerene, [60]fullerenoacetic acid, and IDA-[60]fullerene) were prepared and subjected to a comprehensive characterization study including protein binding properties and capacity. These fullerene derivatives were successfully applied as material-enhanced laser desorption/ionization (MELDI) carrier materials. It is shown that diverse functionalities result in characteristic human serum peak patterns (m/z 2000-20 000) in terms of signal intensity as well as the number of detectable masses. In addition, the fullerene derivatives clearly provided differences in the low molecular weight mass region (m/z 1000-4000) after elution of the adsorbed serum constituents, and [60]fullerenoacetic acid was the most effective carrier material. Novel high-speed, monolithic, high-resolution capillary columns, prepared by thermally initiated copolymerization of methylstyrene (MSt) and 1,2-bis(p-vinylphenyl)ethane (BVPE) were employed for eluate separation and target spotting. Thus, serum compounds in the low-mass range were successfully fractionated and subjected to MALDI-MS/MS analysis. This contribution, hence, proposes a new "top-down" strategy for proteome research enabling protein profiling as well as biomarker identification in the low-mass range using selective enrichment, high-resolution separation, and offline MALDI-MS/MS evaluation.
    Journal of Proteome Research 02/2007; 6(1):44-53. · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser desorption/ionization mass spectrometry (LDI-MS) is a widespread and powerful technique for mass analysis allowing the soft ionization of molecules such as peptides, proteins and carbohydrates. In many applications, an energy absorbing matrix has to be added to the analytes in order to protect them from being fragmented by direct laser beam. LDI-MS in conjunction with matrix is commonly referred as matrix-assisted LDI (MALDI). One of the striking disadvantages of this method is the desorption of matrix molecules, which causes interferences originating from matrix background ions in lower mass range (< 1000 Da). This has been led to the development of a variety of different carbon based LDI sample supports, which are capable of absorbing laser light and simultaneously transfering energy to the analytes for desorption. Furthermore carbon containing sample supports are used as carrier materials for the specific binding and preconcentration of molecules out of complex samples. Their subsequent analysis with MALDI mass spectrometry allows performing studies in metabolomics and proteomics. Finally a thin layer of carbon significantly improves sensitivity concerning detection limit. Analytes in low femtomole and attomole range can be detected in this regard. In the present article, these aspects are reviewed from patents where nano-based carbon materials are comprehensively utilized.
    Recent patents on nanotechnology. 01/2007; 1(2):113-9.
  • Journal of Near Infrared Spectroscopy 01/2007; 15:269-282. · 1.42 Impact Factor
  • Source
    The Open Analytical Chemistry Journal 01/2007; 1:21-27.

Publication Stats

185 Citations
46.51 Total Impact Points

Institutions

  • 2007–2013
    • University of Innsbruck
      • Institut für Analytische Chemie und Radiochemie
      Innsbruck, Tyrol, Austria
  • 2009
    • Catalan Institute of Nanoscience and Nanotechnology
      Barcino, Catalonia, Spain