D M Coen

Harvard Medical School, Boston, Massachusetts, United States

Are you D M Coen?

Claim your profile

Publications (205)1256.58 Total impact

  • Han Chen, G Peter Beardsley, Donald M Coen
    [Show abstract] [Hide abstract]
    ABSTRACT: Many antiviral and anticancer drugs are nucleoside analogs that target polymerases and cause DNA chain termination. Interestingly, ganciclovir (GCV), the first line of therapy for human cytomegalovirus (HCMV) infections, induces chain termination despite containing the equivalent of a 3'-hydroxyl group. Certain HCMV GCV resistance (GCV(r)) mutations, including ones associated with treatment failures, result in substitutions in the 3'-5' exonuclease (Exo) domain of the catalytic subunit of the viral DNA polymerase (Pol). To investigate how these mutations confer resistance, we overexpressed and purified wild-type (WT) HCMV Pol and three GCV(r) Exo mutants. Kinetic studies provided little support for resistance being due to effects on Pol binding or incorporation of GCV-triphosphate. The mutants were defective for Exo activity on all primer templates tested, including those with primers terminating with GCV, arguing against the mutations increasing excision of the incorporated drug. However, although the WT enzyme terminated DNA synthesis after incorporation of GCV-triphosphate and an additional nucleotide (N+1), the Exo mutants could efficiently synthesize DNA to the end of such primer templates. Notably, the Exo activity of WT Pol rapidly and efficiently degraded N+2 primer templates to N+1 products that were not further degraded. On N+1 primer templates, WT Pol, much more than the Exo mutants, converted the incoming deoxynucleoside triphosphate to its monophosphate, indicative of rapid addition and removal of incorporated nucleotides ("idling"). These results explain how GCV induces chain termination and elucidate a previously unidentified mechanism of antiviral drug resistance.
    Proceedings of the National Academy of Sciences of the United States of America. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpesvirus nucleocapsids exit the host cell nucleus in an unusual process known as nuclear egress. The human cytomegalovirus (HCMV) UL97 protein kinase is required for efficient nuclear egress, which can be explained by its phosphorylation of the nuclear lamina component lamin A/C to disrupt the nuclear lamina. We found that a dominant negative lamin A/C mutant complemented the replication defect of a virus lacking UL97 in dividing cells, validating this explanation. However, as complementation was incomplete, we investigated whether the HCMV nuclear egress complex (NEC) subunits UL50 and UL53, which are required for nuclear egress and recruit UL97 to the nuclear rim, are UL97 substrates. Using mass spectrometry we detected UL97-dependent phosphorylation of UL50 residue S216 and UL53-S19 in infected cells. Moreover, UL53-S19 was specifically phosphorylated by UL97 in vitro. Notably, treatment of infected cells with the UL97 inhibitor maribavir or infection with a UL97 mutant led to a punctate rather than a continuous distribution of the NEC at the nuclear rim. Alanine substitutions of both UL50-S216 and UL53-S19 resulted in a punctate distribution of the NEC in infected cells, and decreased virus production and nuclear egress in the absence of maribavir. These results indicate that UL97 phosphorylates the NEC, and suggest that this phosphorylation modulates nuclear egress. Thus, the UL97-NEC interaction appears to recruit UL97 to the nuclear rim both for disruption of nuclear lamina and phosphorylation of the NEC.
    Journal of virology. 10/2014;
  • Brian J Bender, Donald M Coen, Blair L Strang
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein and protein-nucleic acid interactions within sub-cellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG co-localized with the viral single stranded DNA binding protein UL57, but co-localization became less prominent as infection progressed. A portion of UL84FLAG also co-localized with the host nucleolar protein nucleolin, at the periphery of both replication compartments and nucleoli. siRNA mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal co-immunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44 and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin.
    Journal of virology. 07/2014;
  • Mayuri Sharma, Donald M Coen
    [Show abstract] [Hide abstract]
    ABSTRACT: The human cytomegalovirus (HCMV) kinase UL97 is required for efficient nuclear lamina disruption during nuclear egress. However, cellular protein kinase C (PKC) has been implicated in this process in other systems. Comparing the effects of UL97 or cellular kinase inhibitors on HCMV nuclear egress confirms a role for UL97 in lamina disruption and nuclear egress. A pan-PKC inhibitor did not affect lamina disruption, but did reduce the number of cytoplasmic capsids more than nuclear capsids.
    Journal of virology. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: After infecting peripheral sites, herpes simplex virus (HSV) invades the nervous system and initiates latent infection in sensory neurons. Establishment and maintenance of HSV latency require host survival, and entail repression of productive cycle ("lytic") viral gene expression. We find that a neuron-specific microRNA, miR-138, represses expression of ICP0, a viral transactivator of lytic gene expression. A mutant HSV-1 (M138) with disrupted miR-138 target sites in ICP0 mRNA exhibits enhanced expression of ICP0 and other lytic proteins in infected neuronal cells in culture. Following corneal inoculation, M138-infected mice have higher levels of ICP0 and lytic transcripts in trigeminal ganglia during establishment of latency, and exhibit increased mortality and encephalitis symptoms. After full establishment of latency, the fraction of trigeminal ganglia harboring detectable lytic transcripts is greater in M138-infected mice. Thus, miR-138 is a neuronal factor that represses HSV-1 lytic gene expression, promoting host survival and viral latency.
    Cell host & microbe 04/2014; 15(4):446-56. · 13.02 Impact Factor
  • Shariya Terrell, Jean M Pesola, Donald M Coen
    [Show abstract] [Hide abstract]
    ABSTRACT: The catalytic subunit of the herpes simplex virus 1 DNA polymerase (HSV-1 Pol) is essential for viral DNA synthesis and production of infectious virus in cell culture. While mutations that affect 5-3 polymerase activity have been evaluated in animal models of HSV-1 infection, mutations that affect other functions of HSV-1 Pol have not. In a previous report, we utilized bacterial artificial chromosome technology to generate defined HSV-1 pol mutants with lesions in the previously uncharacterized pre-NH2-terminal domain. We found that the extreme N-terminal 42 residues (deletion mutant polΔN43) were dispensable for replication in cell culture, while residues 44-49 (alanine-substitution mutant polA6) were required for efficient viral DNA synthesis and production of infectious virus. In this study, we sought to address the importance of these conserved elements in viral replication in a mouse corneal infection model. Mutant virus polΔN43 exhibited no meaningful defect in acute or latent infection despite strong conservation of residues 1-42 with HSV-2 Pol. The polA6 mutation caused a modest defect in replication at the site of inoculation, and was severely impaired for ganglionic replication, even at high inocula that permitted efficient corneal replication. Additionally, the polA6 mutation resulted in reduced latency establishment and subsequent reactivation. Moreover, we found that the polA6 replication defect in cultured cells was exacerbated in resting cells as compared to dividing cells. These results reveal an important role for the conserved motif at residues 44-49 of HSV-1 Pol for ganglionic viral replication.
    Journal of General Virology 01/2014; · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The catalytic site of the HIV integrase is contained within an RNase H-like fold, and numerous drugs have been developed that bind to this site and inhibit its activity. Herpes simplex virus (HSV) encodes two proteins with potential RNase H-like folds, the infected cell protein 8 (ICP8) DNA-binding protein, which is necessary for viral DNA replication and exhibits recombinase activity in vitro, and the viral terminase, which is essential for viral DNA cleavage and packaging. Therefore, we hypothesized that HIV integrase inhibitors might also inhibit HSV replication by targeting ICP8 and/or the terminase. To test this, we evaluated the effect of 118-D-24, a potent HIV integrase inhibitor, on HSV replication. We found that 118-D-24 inhibited HSV-1 replication in cell culture at submillimolar concentrations. To identify more potent inhibitors of HSV replication, we screened a panel of integrase inhibitors, and one compound with greater anti-HSV-1 activity, XZ45, was chosen for further analysis. XZ45 significantly inhibited HSV-1 and HSV-2 replication in different cell types, with 50% inhibitory concentrations that were approximately 1 µM, but exhibited low cytotoxicity, with a 50% cytotoxic concentration greater than 500 µM. XZ45 blocked HSV viral DNA replication and late gene expression. XZ45 also inhibited viral recombination in infected cells and ICP8 recombinase activity in vitro. Furthermore, XZ45 inhibited human cytomegalovirus replication and induction of Kaposi's sarcoma herpesvirus from latent infection. Our results argue that inhibitors of enzymes with RNase H-like folds may represent a general antiviral strategy, which is useful not only against HIV but also against herpesviruses.
    mBio 01/2014; 5(4). · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To facilitate studies of herpes simplex virus 1 latency, cell culture models of quiescent or latent infection have been developed. Using deep sequencing, we analyzed the expression of viral miRNAs in two models employing human fibroblasts and one using rat neurons. In all cases, the expression pattern differed from that in productively infected cells, with the rat neuron pattern most closely resembling that found in latently infected human or mouse ganglia in vivo.
    Journal of Virology 12/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 co-localized with the nuclear rim, dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53, detected UL97, but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and recruit UL97, not PKC for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.
    Journal of Virology 10/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated thymidine kinase (tk) mutants isolated during multiple episodes of recurrent bilateral acyclovir resistant herpes simplex keratitis in an immunocompetent patient. From one eye, we found a single guanine insertion, previously shown to greatly reduce TK expression, and from the other, a previously unidentified substitution, which genetic experiments confirmed confers drug resistance. The substitution, although distant from substrate binding sites, reduced thymidine phosphorylation 10-20 fold, and acyclovir phosphorylation >100 fold. This phenotype should permit reactivation from latency to cause recurrent disease. The results may have implications for the prevalence and prevention of acyclovir-resistance in patients with herpes simplex keratitis.
    The Journal of Infectious Diseases 08/2013; · 5.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cytomegalovirus (HCMV) encodes one conventional protein kinase, UL97. During infection, UL97 phosphorylates the retinoblastoma tumor suppressor protein (pRb) on sites ordinarily phosphorylated by cyclin-dependent kinases (CDK), inactivating the ability of pRb to repress host genes required for cell cycle progression to S-phase. UL97 is important for viral DNA synthesis in quiescent cells, but this function can be replaced by human papillomavirus-16 E7, which targets pRb for degradation. However, viruses in which E7 replaces UL97 are still defective for virus production. UL97 is also required for efficient nuclear egress of viral nucleocapsids, which is associated with disruption of the nuclear lamina during infection, and phosphorylation of lamin A/C on serine 22, which antagonizes lamin polymerization. We investigated whether inactivation of pRb might overcome the requirement of UL97 for these roles, as pRb inactivation induces CDK1, and CDK1 phosphorylates lamin A/C on serine 22. We found that lamin A/C serine 22 phosphorylation during HCMV infection correlated with expression of UL97 and was considerably delayed in UL97-null mutants, even when E7 was expressed. E7 failed to restore gaps in the nuclear lamina seen in wild type but not UL97-null infections. In electron microscopy analyses, a UL97-null virus expressing E7 was as impaired as a UL97-null mutant in cytoplasmic accumulation of viral nucleocapsids. Our results demonstrate that pRb inactivation is insufficient to restore efficient viral nuclear egress of HCMV in the absence of UL97 and instead argue further for a direct role of UL97 in this stage of the infectious cycle.
    Journal of Virology 02/2013; · 5.08 Impact Factor
  • Source
    Anna R Cliffe, Donald M Coen, David M Knipe
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT The herpes simplex virus (HSV) genome is associated with heterochromatic histone modifications, including trimethylation of the lysine 27 residue of histone H3 (H3K27me3), during latent infection of neurons. Here we have examined the kinetics of general chromatin and H3K27me3 association with the viral genome during establishment of latent infection. Using both wild-type virus and a mutant virus that is unable to undergo replication in neurons, we found that histone H3 associates with viral gene promoters by 7 days postinfection (dpi). Levels of H3K27me3 were low at 7 dpi but increased dramatically by 14 dpi. Hence, general chromatin association and/or other factors may play a key role(s) in the initial silencing of lytic genes, and H3K27me3 may play a role in further suppression of the genome and/or the maintenance of latency. A component of Polycomb repressive complex 2 (PRC2), which mediates the addition of K27me3 to histone H3 (Suz12), was also recruited by 14 dpi. We have shown previously that the levels of H3K27me3 during latent infection are increased in the presence of the latency-associated transcript (LAT). However, the initial targeting of PRC2 was not found to be dependent on the LAT. We found that a component of the PRC1 complex (Bmi1), which binds to H3K27me3, was not enriched at promoters found previously to be enriched for H3K27me3. Our results are consistent with (i) chromatinization of viral DNA or other mechanisms causing the initial silencing of HSV lytic genes and (ii) facultative heterochromatin maintaining that silencing during latent infection of neurons. IMPORTANCE The human pathogen herpes simplex virus (HSV) hides for the lifetime of the host in peripheral neurons. The mechanism by which HSV is able to shut off its gene expression and persist in neurons is not known. Here we show that the HSV DNA first associates with histone H3, with later recruitment of Polycomb repressor complex 2 (PRC2) and trimethylation of the lysine 27 residue of histone H3 (H3K27me3), a modification associated with heterochromatin. This work indicates that the initial silencing of HSV gene expression is not correlated with enrichment of H3K27me3 and that PRC2 may be recruited to already-silenced genes to further silence gene expression and/or maintain gene silencing. We demonstrate that recruitment of PRC2 is not dependent upon expression of the noncoding HSV latency-associated transcripts, indicating the presence of unknown triggers for PRC2 recruitment during the establishment of latent infection.
    mBio 01/2013; 4(1). · 6.88 Impact Factor
  • Source
    Dongli Pan, Donald M Coen
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosomal frameshifting entails slippage of the translational machinery during elongation. Frameshifting permits expression of more than one polypeptide from an otherwise monocistronic mRNA, and can restore expression of polypeptides in the face of frameshift mutations. A common mutation conferring acyclovir resistance in patients with herpes simplex virus disease deletes one cytosine from a run of six cytosines (C-chord) in the viral thymidine kinase (tk) gene. However, this mutation does not abolish TK activity, which is important for pathogenicity. To investigate how this mutant retains TK activity, we engineered and analyzed viruses expressing epitope-tagged TK. We found that the mutant's TK activity can be accounted for by low levels of full-length TK polypeptide produced by net -1 frameshifting during translation. The efficiency of frameshifting was relatively high, 3-5%, as the polypeptide from the reading frame generated by the deletion, which lacks stop codons (nonstop), was poorly expressed mainly because of inefficient protein synthesis. Stop codons introduced into this reading frame greatly increased its expression, but greatly decreased the level of full-length TK, indicating that frameshifting is strongly stimulated by a new mechanism, nonstop mRNA, which we hypothesize involves stalling of ribosomes on the polyA tail. Mutational studies indicated that frameshifting occurs on or near the C-chord, a region lacking a canonical slippery sequence. Nonstop stimulation of frameshifting also occurred when the C-chord was replaced with a canonical slippery sequence from HIV. This mechanism thus permits biologically and clinically relevant TK synthesis, and may occur more generally.
    Proceedings of the National Academy of Sciences 08/2012; 109(37):14852-7. · 9.81 Impact Factor
  • Source
    Shariya L Terrell, Donald M Coen
    [Show abstract] [Hide abstract]
    ABSTRACT: The catalytic subunit of herpes simplex virus 1 DNA polymerase (HSV-1 Pol) has been extensively studied; however, its full complement of functional domains has yet to be characterized. A crystal structure has revealed a previously uncharacterized pre-NH(2)-terminal domain (residues 1 to 140) within HSV-1 Pol. Due to the conservation of the pre-NH(2)-terminal domain within the herpesvirus Pol family and its location in the crystal structure, we hypothesized that this domain provides an important function during viral replication in the infected cell distinct from 5'-3' polymerase activity. We identified three pre-NH(2)-terminal Pol mutants that exhibited 5'-3' polymerase activity indistinguishable from that of wild-type Pol in vitro: deletion mutants PolΔN43 and PolΔN52 that lack the extreme N-terminal 42 and 51 residues, respectively, and mutant PolA(6), in which a conserved motif at residues 44 to 49 was replaced with alanines. We constructed the corresponding pol mutant viruses and found that the polΔN43 mutant displayed replication kinetics similar to those of wild-type virus, while polΔN52 and polA(6) mutant virus infection resulted in an 8-fold defect in viral yield compared to that achieved with wild type and their respective rescued derivative viruses. Additionally, both polΔN52 and polA(6) viruses exhibited defects in viral DNA synthesis that correlated with the observed reduction in viral yield. These results strongly indicate that the conserved motif within the pre-NH(2)-terminal domain is important for viral DNA synthesis and production of infectious virus and indicate a functional role for this domain.
    Journal of Virology 08/2012; 86(20):11057-65. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.
    Journal of Virology 08/2012; 86(20):11066-77. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3' untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection.
    Journal of Virology 07/2012; 86(18):10093-102. · 5.08 Impact Factor
  • Source
    Dongli Pan, Donald M Coen
    [Show abstract] [Hide abstract]
    ABSTRACT: To be clinically relevant, drug-resistant mutants must both evade drug action and retain pathogenicity. Many acyclovir-resistant herpes simplex virus mutants from clinical isolates have one or two base insertions (G8 and G9) or one base deletion (G6) in a homopolymeric run of seven guanines (G string) in the gene encoding thymidine kinase (TK). Nevertheless, G8 and G9 mutants express detectable TK activity and can reactivate from latency in mice, a pathogenicity marker. On the basis of studies using cell-free systems, ribosomal frameshifting can explain this ability to express TK. To investigate frameshifting in infected cells, we constructed viruses that express epitope-tagged versions of wild-type and mutant TKs. We measured TK activity by plaque autoradiography and expression of frameshifted and unframeshifted TK polypeptides using a very sensitive immunoprecipitation-Western blotting method. The G6 mutant expressed ∼0.01% of wild-type levels of TK polypeptide. For the G9 mutant, consistent with previous results, much TK expression could be ascribed to reversion. For the G8 mutant, from these assays and pulse-labeling studies, we determined the ratio of synthesis of frameshifted to unframeshifted polypeptides to be 1:100. The effects of stop codons before or after the G string argue that frameshifting can initiate within the first six guanines. However, frameshifting efficiency was altered by stop codons downstream of the string in the 0 frame. The G8 mutant expressed only 0.1% of the wild-type level of full-length TK, considerably lower than estimated previously. Thus, remarkably low levels of TK are sufficient for reactivation from latency in mice.
    Journal of Virology 02/2012; 86(8):4518-26. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drastic reorganization of the nucleus is a hallmark of herpesvirus replication. This reorganization includes the formation of viral replication compartments, the subnuclear structures in which the viral DNA genome is replicated. The architecture of replication compartments is poorly understood. However, recent work with human cytomegalovirus (HCMV) showed that the viral DNA polymerase subunit UL44 concentrates and viral DNA synthesis occurs at the periphery of these compartments. Any cellular factors involved in replication compartment architecture are largely unknown. Previously, we found that nucleolin, a major protein component of nucleoli, associates with HCMV UL44 in infected cells and is required for efficient viral DNA synthesis. Here, we show that nucleolin binds to purified UL44. Confocal immunofluorescence analysis demonstrated colocalization of nucleolin with UL44 at the periphery of replication compartments. Pharmacological inhibition of viral DNA synthesis prevented the formation of replication compartments but did not abrogate association of UL44 and nucleolin. Thus, association of UL44 and nucleolin is unlikely to be a nonspecific effect related to development of replication compartments. No detectable colocalization of 5-ethynyl-2'-deoxyuridine (EdU)-labeled viral DNA with nucleolin was observed, suggesting that nucleolin is not directly involved in viral DNA synthesis. Small interfering RNA (siRNA)-mediated knockdown of nucleolin caused improper localization of UL44 and a defect in EdU incorporation into viral DNA. We propose a model in which nucleolin anchors UL44 at the periphery of replication compartments to maintain their architecture and promote viral DNA synthesis. IMPORTANCE: Human cytomegalovirus (HCMV) is an important human pathogen. HCMV infection causes considerable rearrangement of the structure of the nucleus, largely due to the formation of viral replication compartments within the nucleus. Within these compartments, the virus replicates its DNA genome. We previously demonstrated that nucleolin is required for efficient viral DNA synthesis and now find that the nucleolar protein nucleolin interacts with a subunit of the viral DNA polymerase, UL44, specifically at the periphery of replication compartments. Moreover, we find that nucleolin is required to properly localize UL44 at this region. Nucleolin is, therefore, involved in the organization of proteins within replication compartments. This, to our knowledge, is the first report identifying a cellular protein required for maintaining replication compartment architecture.
    mBio 01/2012; 3(1). · 6.88 Impact Factor
  • Source
    Sandra K Weller, Donald M Coen
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex virus (HSV) encodes seven proteins necessary for viral DNA synthesis-UL9 (origin-binding protein), ICP8 (single-strand DNA [ssDNA]-binding protein), UL30/UL42 (polymerase), and UL5/UL8/UL52 (helicase/primase). It is our intention to provide an up-to-date analysis of our understanding of the structures of these replication proteins and how they function during HSV replication. The potential roles of host repair and recombination proteins will also be discussed.
    Cold Spring Harbor perspectives in biology 01/2012; 4(9). · 9.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of replication compartments, the subnuclear structures in which the viral DNA genome is replicated, is a hallmark of herpesvirus infections. The localization of proteins and viral DNA within human cytomegalovirus replication compartments is not well characterized. Immunofluorescence analysis demonstrated the accumulation of the viral DNA polymerase subunit UL44 at the periphery of replication compartments and the presence of different populations of UL44 in infected cells. In contrast, the viral single-stranded-DNA binding protein UL57 was distributed throughout replication compartments. Using "click chemistry" to detect 5-ethynyl-2'-deoxyuridine (EdU) incorporation into replicating viral DNA and pulse-chase protocols, we found that viral DNA synthesis occurs at the periphery of replication compartments and that replicated viral DNA subsequently localizes to the interior of replication compartments. The interiors of replication compartments also contain regions in which UL44 and EdU-labeled DNA are absent. The treatment of cells with a viral DNA polymerase inhibitor reversibly caused the dispersal of both UL44 and EdU-labeled viral DNA from replication compartments, indicating that ongoing viral DNA synthesis is necessary to maintain the organization of replication compartments. Our results reveal a previously unappreciated complexity of the organization of human cytomegalovirus replication compartments.
    Journal of Virology 12/2011; 86(4):2089-95. · 5.08 Impact Factor

Publication Stats

9k Citations
1,256.58 Total Impact Points

Institutions

  • 1984–2014
    • Harvard Medical School
      • • Department of Biological Chemistry and Molecular Pharmacology
      • • Department of Microbiology and Immunobiology
      Boston, Massachusetts, United States
  • 2011
    • Louisiana State University Health Sciences Center New Orleans
      • Microbiology, Immunology & Parasitology
      Baton Rouge, LA, United States
  • 2000–2011
    • Harvard University
      • Department of Chemistry and Chemical Biology
      Boston, MA, United States
  • 2009
    • Brigham and Women's Hospital
      • Department of Medicine
      Boston, MA, United States
  • 2005–2009
    • State University of New York Upstate Medical University
      • Department of Microbiology and Immunology
      Syracuse, NY, United States
  • 2007
    • University of Padova
      Padua, Veneto, Italy
  • 2004
    • Millennium Pharmaceuticals Inc
      Boston, Massachusetts, United States
  • 1995
    • University of Cambridge
      • Department of Pathology
      Cambridge, ENG, United Kingdom
    • Joslin Diabetes Center
      Boston, Massachusetts, United States
  • 1994
    • Georgetown University
      • Department of Neurosurgery (MedStar)
      Washington, D. C., DC, United States
  • 1983–1994
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States
  • 1990
    • University of British Columbia - Vancouver
      Vancouver, British Columbia, Canada