Sang Mi Shim

Seoul National University, Sŏul, Seoul, South Korea

Are you Sang Mi Shim?

Claim your profile

Publications (6)33.69 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: The ubiquitin-proteasome system is essential for maintaining protein homeostasis. However, proteasome dysregulation in chronic diseases is poorly understood. Through genome-wide cell-based screening using 5,500 cDNAs, a signaling pathway leading to NFκB activation was selected as an inhibitor of 26S proteasome. TNF-α increased S5b (HGNC symbol PSMD5; hereafter S5b/PSMD5) expression via NFκB, and the surplus S5b/PSMD5 directly inhibited 26S proteasome assembly and activity. Downregulation of S5b/PSMD5 abolished TNF-α-induced proteasome inhibition. TNF-α enhanced the interaction of S5b/PSMD5 with S7/PSMC2 in nonproteasome complexes, and interference of this interaction rescued TNF-α-induced proteasome inhibition. Transgenic mice expressing S5b/PSMD5 exhibited a reduced life span and premature onset of aging-related phenotypes, including reduced proteasome activity in their tissues. Conversely, S5b/PSMD5 deficiency in Drosophila melanogaster ameliorated the tau rough eye phenotype, enhanced proteasome activity, and extended the life span of tau flies. These results reveal the critical role of S5b/PSMD5 in negative regulation of proteasome by TNF-α/NFκB and provide insights into proteasome inhibition in human disease.
    Cell reports. 08/2012; 2(3):603-15.
  • [show abstract] [hide abstract]
    ABSTRACT: We investigated the prevalence and risk factors of vertebral fractures in Korea. In a community-based prospective epidemiology study, 1,155 men and 1,529 women (mean age 59 years, range 43-74) were recruited from Ansung, a rural Korean community. Prevalent vertebral fractures were identified on the lateral spinal radiographs at T11 to L4 using vertebral morphometry. Bone mineral density (BMD) was measured at the lumbar spine, femur neck and total hip. Of the 2,684 subjects, 137 (11.9%) men and 227 (14.8%) women had vertebral fractures and the standardized prevalence for vertebral fractures using the age distribution of Korean population was 8.8% in men and 12.6% in women. In univariate analysis, older age, low hip circumference, low BMD, low income and education levels in both sexes, previous history of fracture in men, high waist-to-hip circumference ratio, postmenopausal status, longer duration since menopause, and higher number of pregnancies and deliveries in women were associated with an increased risk of vertebral fractures. However, after adjusting for age, only low BMD in both sexes and a previous history of fracture in men were significantly associated with an increased risk of vertebral fractures. Vertebral fractures are prevalent in Korea as in other countries. Older age, low BMD and a previous history of fracture are significant risk factors for vertebral fractures.
    Journal of Bone and Mineral Metabolism 07/2011; 30(2):183-92. · 2.22 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Amyloid-beta (Abeta) neurotoxicity is believed to contribute to the pathogenesis of Alzheimer's disease (AD). Previously we found that E2-25K/Hip-2, an E2 ubiquitin-conjugating enzyme, mediates Abeta neurotoxicity. Here, we report that E2-25K/Hip-2 modulates caspase-12 activity via the ubiquitin/proteasome system. Levels of endoplasmic reticulum (ER)-resident caspase-12 are strongly up-regulated in the brains of AD model mice, where the enzyme colocalizes with E2-25K/Hip-2. Abeta increases expression of E2-25K/Hip-2, which then stabilizes caspase-12 protein by inhibiting proteasome activity. This increase in E2-25K/Hip-2 also induces proteolytic activation of caspase-12 through its ability to induce calpainlike activity. Knockdown of E2-25K/Hip-2 expression suppresses neuronal cell death triggered by ER stress, and thus caspase-12 is required for the E2-25K/Hip-2-mediated cell death. Finally, we find that E2-25K/Hip-2-deficient cortical neurons are resistant to Abeta toxicity and to the induction of ER stress and caspase-12 expression by Abeta. E2-25K/Hip-2 is thus an essential upstream regulator of the expression and activation of caspase-12 in ER stress-mediated Abeta neurotoxicity.
    The Journal of Cell Biology 09/2008; 182(4):675-84. · 10.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Apoptosis repressor with CARD (ARC) possesses the ability not only to block activation of caspase 8 but to modulate caspase-independent mitochondrial events associated with cell death. However, it is not known how ARC modulates both caspase-dependent and caspase-independent cell death. Here, we report that ARC is a Ca(2+)-dependent regulator of caspase 8 and cell death. We found that in Ca(2+) overlay and Stains-all assays, ARC protein bound to Ca(2+) through the C-terminal proline/glutamate-rich (P/E-rich) domain. ARC expression reduced not only cytosolic Ca(2+) transients but also cytotoxic effects of thapsigargin, A23187, and ionomycin, for which the Ca(2+)-binding domain of ARC was indispensable. Conversely, direct interference of endogenous ARC synthesis by targeting ARC enhanced such Ca(2+)-mediated cell death. In addition, binding and immunoprecipitation analyses revealed that the protein-protein interaction between ARC and caspase 8 was decreased by the increase of Ca(2+) concentration in vitro and by the treatment of HEK293 cells with thapsigargin in vivo. Caspase 8 activation was also required for the thapsigargin-induced cell death and suppressed by the ectopic expression of ARC. These results suggest that calcium binding mediates regulation of caspase 8 and cell death by ARC.
    Molecular and Cellular Biology 12/2004; 24(22):9763-70. · 5.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The ubiquitin/proteasome system has been proposed to play an important role in Alzheimer's disease (AD) pathogenesis. However, the critical factor(s) modulating both amyloid-beta peptide (Abeta) neurotoxicity and ubiquitin/proteasome system in AD are not known. We report the isolation of an unusual ubiquitin-conjugating enzyme, E2-25K/Hip-2, as a mediator of Abeta toxicity. The expression of E2-25K/Hip-2 was upregulated in the neurons exposed to Abeta(1-42) in vivo and in culture. Enzymatic activity of E2-25K/Hip-2 was required for both Abeta(1-42) neurotoxicity and inhibition of proteasome activity. E2-25K/Hip-2 functioned upstream of apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK) in Abeta(1-42) toxicity. Further, the ubiquitin mutant, UBB+1, a potent inhibitor of the proteasome which is found in Alzheimer's brains, was colocalized and functionally interacted with E2-25K/Hip-2 in mediating neurotoxicity. These results suggest that E2-25K/Hip-2 is a crucial factor in regulating Abeta neurotoxicity and could play a role in the pathogenesis of Alzheimer's disease.
    Molecular Cell 10/2003; 12(3):553-63. · 15.28 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The ubiquitin/proteasome system has been proposed to play an important role in Alzheimer's disease (AD) pathogenesis. However, the critical factor(s) modulating both amyloid-β peptide (Aβ) neurotoxicity and ubiquitin/proteasome system in AD are not known. We report the isolation of an unusual ubiquitin-conjugating enzyme, E2-25K/Hip-2, as a mediator of Aβ toxicity. The expression of E2-25K/Hip-2 was upregulated in the neurons exposed to Aβ1-42 in vivo and in culture. Enzymatic activity of E2-25K/Hip-2 was required for both Aβ1-42 neurotoxicity and inhibition of proteasome activity. E2-25K/Hip-2 functioned upstream of apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK) in Aβ1-42 toxicity. Further, the ubiquitin mutant, UBB+1, a potent inhibitor of the proteasome which is found in Alzheimer's brains, was colocalized and functionally interacted with E2-25K/Hip-2 in mediating neurotoxicity. These results suggest that E2-25K/Hip-2 is a crucial factor in regulating Aβ neurotoxicity and could play a role in the pathogenesis of Alzheimer's disease.
    Molecular Cell - MOL CELL. 01/2003; 12(3):553-563.

Publication Stats

132 Citations
18 Downloads
370 Views
33.69 Total Impact Points

Institutions

  • 2008–2012
    • Seoul National University
      • Department of Biological Sciences
      Sŏul, Seoul, South Korea
  • 2004
    • Gwangju Institute of Science and Technology
      • Department of Life Sciences
      Kwangju, Gwangju, South Korea