Michael J Bamshad

Seattle Children's Hospital, Seattle, Washington, United States

Are you Michael J Bamshad?

Claim your profile

Publications (206)2034.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Ichthyoses are clinically characterized by scaling or hyperkeratosis of the skin or both. It can be an isolated condition limited to the skin or appear secondarily with involvement of other cutaneous or systemic abnormalities. Methods: The present study investigated clinical and molecular characterization of three consanguineous families (A, B, C) segregating two different forms of autosomal recessive congenital ichthyosis (ARCI). Linkage in three consanguineous families (A, B, C) segregating two different forms of ARCI was searched by typing microsatellite and single nucleotide polymorphism marker analysis. Sequencing of the two genes TGM1 and ALOXE3 was performed by the dideoxy chain termination method. Results: Genome-wide linkage analysis established linkage in family A to TGM1 gene on chromosome 14q11 and in families B and C to ALOXE3 gene on chromosome 17p13. Subsequently, sequencing of these genes using samples from affected family members led to the identification of three novel mutations: a missense variant p.Trp455Arg in TGM1 (family A); a nonsense variant p.Arg140* in ALOXE3 (family B); and a complex rearrangement in ALOXE3 (family C). Conclusion: The present study further extends the spectrum of mutations in the two genes involved in causing ARCI. Characterizing the clinical spectrum resulting from mutations in the TGM1 and ALOXE3 genes will improve diagnosis and may direct clinical care of the family members.
    International journal of dermatology 11/2015; DOI:10.1111/ijd.12950 · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To determine the contribution of rare variants as genetic modifiers of the expressivity, penetrance, and severity of systemic sclerosis (SSc). Methods: We performed whole-exome sequencing of 78 European American systemic sclerosis patients, including 35 patients without pulmonary arterial hypertension (SSc-PAH-) and 43 patients with PAH (SSc-PAH+). Association testing of case-control probability for rare variants was performed using the aSKAT-O method with small sample adjustment by comparing all SSc patients with a reference population of 3,179 controls from the ESP 5,500 exome dataset. Replication genotyping was performed in an independent sample of 3,263 patients (415 SSc and 2,848 controls). We conducted expression profiling of mRNA from 61 SSc patients (19 SSc-PAH- and 42 SSc-PAH+) and 41 corresponding controls. Results: The ATP8B4 gene was associated with a significant increase in the risk of SSc (P = 3.18 × 10(-7) ). Among the 64 ATP8B4 variants tested, a single missense variant, c.1308C>G (F436L, rs55687265), provided the most compelling evidence for association (P = 9.35 × 10(-10) ; OR = 6.11), which was confirmed in the replication cohort (P = 0.012; OR = 1.86) and meta-analysis (P = 1.92 x 10(-7) ; OR = 2.5). Genes involved in E3 ubiquitin-protein ligase complex (ASB10) and cyclic nucleotide gated channelopathies (CNGB3) as well as HLA-DRB5 and HSPB2 (aka heat shock protein 27) provided additional evidence for association (P < 10(-5) ). Differential ATP8B4 expression was observed among the SSc patients compared to the controls (P = 0.0005). Conclusion: ATP8B4 may represent a putative genetic risk factor for SSc and pulmonary vascular complications. This article is protected by copyright. All rights reserved.
    Arthritis and Rheumatology 10/2015; DOI:10.1002/art.39449
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key points: The contractile properties of human fetal cardiac muscle have not been previously studied. Small-scale approaches such as isolated myofibril and isolated contractile protein biomechanical assays allow study of activation and relaxation kinetics of human fetal cardiac muscle under well controlled conditions. We have examined the contractile properties of human fetal cardiac myofibrils and myosin across gestational age 59 days to 134 days. Human fetal cardiac myofibrils have low force and slow kinetics of activation and relaxation that increase during the time period studied, and kinetic changes may result from structural maturation and changes in protein isoform expression. Understanding the time course of human fetal cardiac muscle structure and contractile maturation can provide a framework to study development of contractile dysfunction with disease and evaluate the maturation state of cultured stem cell-derived cardiomyocytes. Abstract: Little is known about the contractile properties of human fetal cardiac muscle during development. Understanding these contractile properties, and how they change throughout development, can provide valuable insight into human heart development, and provide a framework to study the early stages of cardiac diseases that develop in utero. We characterized the contractile properties of isolated human fetal cardiac myofibrils across 8-19 weeks of gestation. Mechanical measurements revealed that in early stages of gestation there is low specific force and slow rates of force development and relaxation, with increases in force and the rates of activation and relaxation as gestation progresses. The duration and slope of the initial, slow phase of relaxation, related to myosin detachment and thin filament deactivation rates, decreased with gestation age. F-actin sliding on human fetal cardiac myosin coated surfaces slowed significantly from 108 to 130 days gestation. Electron micrographs showed human fetal muscle myofibrils elongate and widen with age, but features such as the M-line and Z-band are apparent even as early as day 52. Protein isoform analysis revealed that β-myosin is predominantly expressed even in the earliest time point studied, but there is a progressive increase in expression of cardiac troponin I (TnI), with a concomitant decrease in slow skeletal TnI. Together, our results suggest that cardiac myofibril force production and kinetics of activation and relaxation change significantly with gestation age and are influenced by the structural maturation of the sarcomere and changes in contractile filament protein isoforms. This article is protected by copyright. All rights reserved.
    The Journal of Physiology 10/2015; DOI:10.1113/JP271290 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load. Copyright © 2015, American Association for the Advancement of Science.
    Science 08/2015; 349(6253). DOI:10.1126/science.aab3761 · 33.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital disorders of glycosylation (CDG) are a group of mostly autosomal recessive disorders primarily characterized by neurological abnormalities. Recently, we described a single CDG patient with a de novo mutation in the X-linked gene, Signal Sequence Receptor 4 (SSR4). We performed whole exome sequencing to identify causal variants in several affected individuals who had either an undifferentiated neurological disorder or unsolved CDG of unknown etiology based on abnormal transferrin glycosylation. We now report, eight affected males with either de novo (4) or inherited (4) loss of function mutations in SSR4. Western blot analysis revealed that the mutations caused a complete loss of SSR4 protein. In nearly all cases, the abnormal glycosylation of serum transferrin was only slightly above the accepted normal cutoff range. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Human Mutation 08/2015; 36(11). DOI:10.1002/humu.22856 · 5.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Woolly hair (WH) is a hair abnormality that is primarily characterised by tightly curled hair with abnormal growth. In two unrelated consanguineous Pakistani families with non-syndromic autosomal recessive (AR) WH, homozygosity mapping and linkage analysis identified a locus within 17q21.1-q22, which contains the type I keratin gene cluster. A DNA sample from an affected individual from each family underwent exome sequencing. A homozygous missense variant c.950T>C (p.(Leu317Pro)) within KRT25 segregated with ARWH in both families, and has a combined maximum two-point LOD score of 7.9 at ϴ=0. The KRT25 variant is predicted to result in disruption of the second α-helical rod domain and the entire protein structure, thus possibly interfering with heterodimerisation of K25 with type II keratins within the inner root sheath (IRS) of the hair follicle and the medulla of the hair shaft. Our findings implicate a novel gene involved in human hair abnormality, and are consistent with the curled, fragile hair found in mice with Krt25 mutations, and further support the role of IRS-specific type I keratins in hair follicle development and maintenance of hair texture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
    Journal of Medical Genetics 07/2015; 52(10). DOI:10.1136/jmedgenet-2015-103255 · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 07/2015; 97(2). DOI:10.1016/j.ajhg.2015.06.009 · 10.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A duplication variant within the middle ear-specific gene A2ML1 cosegregates with otitis media in an indigenous Filipino pedigree (LOD score = 7.5 at reduced penetrance) and lies within a founder haplotype that is also shared by 3 otitis-prone European-American and Hispanic-American children but is absent in non-otitis-prone children and >62,000 next-generation sequences. We identified seven additional A2ML1 variants in six otitis-prone children. Collectively, our studies support a role for A2ML1 in the pathophysiology of otitis media.
    Nature Genetics 06/2015; 47(8). DOI:10.1038/ng.3347 · 29.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Achromatopsia (ACHM) is an early-onset retinal dystrophy characterized by photophobia, nystagmus, color blindness and severely reduced visual acuity. Currently mutations in five genes CNGA3, CNGB3, GNAT2, PDE6C and PDE6H have been implicated in ACHM. We performed homozygosity mapping and linkage analysis in a consanguineous Pakistani ACHM family and mapped the locus to a 15.12-Mb region on chromosome 1q23.1-q24.3 with a maximum LOD score of 3.6. A DNA sample from an affected family member underwent exome sequencing. Within the ATF6 gene, a single-base insertion variant c.355_356dupG (p.Glu119Glyfs*8) was identified, which completely segregates with the ACHM phenotype within the family. The frameshift variant was absent in public variant databases, in 130 exomes from unrelated Pakistani individuals, and in 235 ethnically matched controls. The variant is predicted to result in a truncated protein that lacks the DNA binding and transmembrane domains and therefore affects the function of ATF6 as a transcription factor that initiates the unfolded protein response during endoplasmic reticulum (ER) stress. Immunolabeling with anti-ATF6 antibodies showed localization throughout the mouse neuronal retina, including retinal pigment epithelium, photoreceptor cells, inner nuclear layer, inner and outer plexiform layers, with a more prominent signal in retinal ganglion cells. In contrast to cytoplasmic expression of wild-type protein, in heterologous cells ATF6 protein with the p.Glu119Glyfs*8 variant is mainly confined to the nucleus. Our results imply that response to ER stress as mediated by the ATF6 pathway is essential for color vision in humans.
    Human Genetics 06/2015; 134(9). DOI:10.1007/s00439-015-1571-4 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored.
    PLoS Genetics 06/2015; 11(6):e1005273. DOI:10.1371/journal.pgen.1005273 · 7.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 05/2015; 96(5):841-9. DOI:10.1016/j.ajhg.2015.04.004 · 10.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: http://onlinelibrary.wiley.com/enhanced/doi/10.1002/bdra.23385/ Birth defects are a major cause of morbidity and mortality worldwide. There has been much progress in understanding the genetic basis of familial and syndromic forms of birth defects. However, the etiology of nonsydromic birth defects is not well-understood. Although there is still much work to be done, we have many of the tools needed to accomplish the task. Advances in next-generation sequencing have introduced a sea of possibilities, from disease-gene discovery to clinical screening and diagnosis. These advances have been fruitful in identifying a host of candidate disease genes, spanning the spectrum of birth defects. With the advent of CRISPR-Cas9 gene editing, researchers now have a precise tool for characterizing this genetic variation in model systems. Work in model organisms has also illustrated the importance of epigenetics in human development and birth defects etiology. Here we review past and current knowledge in birth defects genetics. We describe genotyping and sequencing methods for the detection and analysis of rare and common variants. We remark on the utility of model organisms and explore epigenetics in the context of structural malformation. We conclude by highlighting approaches that may provide insight into the complex genetics of birth defects.
    Birth Defects Research Part A Clinical and Molecular Teratology 05/2015; 103(8):n/a-n/a. DOI:10.1002/bdra.23385 · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Speech and language deficits are commonly associated with Kabuki syndrome. Yet little is known regarding the specific symptomatology of these disorders, preventing use of targeted treatment programs. Here we detail speech and language in 16 individuals with Kabuki syndrome (thirteen with KMT2D mutations, one with a KDM6A mutation, and two mutation-negative cases), aged 4-21 years. The most striking speech deficit was dysarthria, characterised by imprecise consonants, harsh vocal quality, hypernasality, reduced rate and stress, and distorted pitch. Oromotor functioning was also impaired. Delayed, rather than disordered, articulation and phonology was common. Both receptive and expressive language abilities were reduced in the majority and deficits were noted across all language sub-domains (i.e., semantics, syntax, morphology, and pragmatics) with no clear differentiation or specific language profile. Individuals with Kabuki syndrome present with a heterogenous pattern of oromotor, speech, and language deficits. This variability fits with the multisystem nature of the disorder, which may encompass neurological, orofacial structural, hearing, and cognitive deficits, any or all of which may contribute to speech or language impairment. Our results suggest that all individuals with Kabuki syndrome have some level of communication deficit, warranting speech pathology involvement in all cases. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 03/2015; 167(7). DOI:10.1002/ajmg.a.37026 · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g., clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with a R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation, and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small sub-population of myosin crossbridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 03/2015; 24(12). DOI:10.1093/hmg/ddv084 · 6.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s). Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 02/2015; 96(3). DOI:10.1016/j.ajhg.2015.01.003 · 10.93 Impact Factor
  • Source

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base. © 2015 Amendola et al.; Published by Cold Spring Harbor Laboratory Press.
    Genome Research 01/2015; 25(3). DOI:10.1101/gr.183483.114 · 14.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual's place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual's mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 01/2015; 96(2). DOI:10.1016/j.ajhg.2014.12.015 · 10.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: & Aims: Chronic intestinal pseudo-obstruction (CIPO) is characterized by severe intestinal dysmotility that mimicks a mechanical sub-occlusion with no evidence of gut obstruction. We searched for genetic variants associated with CIPO to increase our understanding of its pathogenesis and indentify potential biomarkers. We performed whole-exome sequencing of genomic DNA from patients with familial CIPO syndrome. Blood and lymphoblastoid cells were collected from patients and controls (individuals without CIPO); levels of mRNA and proteins were analyzed by quantitative reverse transcription PCR, immunoblot, and mobility shift assays. cDNAs were transfected into HEK293 cells. Expression of rad21 was suppressed in zebrafish embryos using a splice-blocking morpholino (rad21a MO). Gut tissues were collected and analyzed. We identified a homozygous mutation (p.622, encodes Ala>Thr) in RAD21 in patients from a consanguineous family with CIPO. Expression of RUNX1, a target of RAD21, was reduced in cells from patients with CIPO compared with controls. In zebrafish, suppression of rad21a reduced expression of runx1; this phenotype was corrected by injection of human RAD21 mRNA, but not with the mRNA from the mutated p.622 allele. rad21a MO zebrafish had delayed intestinal transit and greatly reduced numbers of enteric neurons, similar to patients with CIPO. This defect was greater in zebrafish with suppressed expression of ret and rad21, indicating their interaction in regulation of gut neurogenesis. The promoter region of APOB bound RAD21 but not RAD21 p.622 Ala>Thr; expression of wild-type RAD21 in HEK293 cells repressed expression of APOB, compared with control vector. The gut-specific isoform of APOB (APOB48) is overexpressed in sera from patients with CIPO who carry the RAD21 mutation. APOB48 is also overexpressed in sporadic CIPO in sera and gut biopsies. Some patients with CIPO carry mutations in RAD21 that disrupt the ability of its product to regulate genes such as RUNX1 and APOB. Reduced expression of rad21 in zebrafish, and dysregulation of these target genes, disrupts intestinal transit and development of enteric neurons. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
    Gastroenterology 01/2015; 148(4). DOI:10.1053/j.gastro.2014.12.034 · 16.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease.
    The American Journal of Human Genetics 12/2014; 96(1). DOI:10.1016/j.ajhg.2014.11.015 · 10.93 Impact Factor

Publication Stats

15k Citations
2,034.06 Total Impact Points


  • 2009-2015
    • Seattle Children's Hospital
      Seattle, Washington, United States
  • 2006-2015
    • University of Washington Seattle
      • • Department of Genome Sciences
      • • Department of Pediatrics
      Seattle, Washington, United States
  • 1995-2006
    • University of Utah
      • • School of Medicine
      • • Department of Human Genetics
      • • Department of Pediatrics
      • • Division of Pediatric Genetics
      Salt Lake City, UT, United States
    • Pennsylvania State University
      • Department of Anthropology
      University Park, Maryland, United States
  • 2003
    • Salt Lake City Community College
      Salt Lake City, Utah, United States
  • 1998-2002
    • Shriners Hospitals for Children
      Tampa, Florida, United States
    • Maine Institute for Human Genetics and Health
      Бангор, Maine, United States
  • 2001
    • Andhra University
      • Department of Anthropology
      Vizag, Andhra Pradesh, India
  • 1999
    • National Human Genome Research Institute
      Maryland, United States
  • 1997
    • University of Helsinki
      Helsinki, Uusimaa, Finland