Rebecca Radde

Hertie-Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany

Are you Rebecca Radde?

Claim your profile

Publications (13)93.25 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous murine amyloid-β peptide (Aβ) is expressed in most Aβ precursor protein (APP) transgenic mouse models of Alzheimer's disease but its contribution to β-amyloidosis remains unclear. We demonstrate ∼35% increased cerebral Aβ load in APP23 transgenic mice compared with age-matched APP23 mice on an App-null background. No such difference was found for the much faster Aβ-depositing APPPS1 transgenic mouse model between animals with or without the murine App gene. Nevertheless, both APP23 and APPPS1 mice codeposited murine Aβ, and immunoelectron microscopy revealed a tight association of murine Aβ with human Aβ fibrils. Deposition of murine Aβ was considerably less efficient compared with the deposition of human Aβ indicating a lower amyloidogenic potential of murine Aβ in vivo. The amyloid dyes Pittsburgh Compound-B and pentamer formyl thiophene acetic acid did not differentiate between amyloid deposits consisting of human Aβ and deposits of mixed human-murine Aβ. Our data demonstrate a differential effect of murine Aβ on human Aβ deposition in different APP transgenic mice. The mechanistically complex interaction of human and mouse Aβ may affect pathogenesis of the models and should be considered when models are used for translational preclinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neurobiology of aging 03/2015; 36(7). DOI:10.1016/j.neurobiolaging.2015.03.011 · 4.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: APPPS1 transgenic mice develop amyloid-β 42 (Aβ42)-driven early-onset cerebral β-amyloidosis. Stereological analysis of neocortical neuron number in groups of 2-, 10-, and 17-month-old APPPS1 mice did not reveal any changes compared with wild-type control animals despite massive amyloid-β (Aβ) load and disrupted cytoarchitecture. However, in subregions with high neuron density such as the granule cell layer of the dentate gyrus, modest but significant neuron loss was found, reminiscent of findings in previously published mouse models with late onset cerebral β-amyloidosis and predominant amyloid-β 40 (Aβ40) expression.
    Neurobiology of aging 10/2010; 32(12):2324.e1-6. DOI:10.1016/j.neurobiolaging.2010.08.014 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Alzheimer's disease, microglia cluster around beta-amyloid deposits, suggesting that these cells are important for amyloid plaque formation, maintenance and/or clearance. We crossed two distinct APP transgenic mouse strains with CD11b-HSVTK mice, in which nearly complete ablation of microglia was achieved for up to 4 weeks after ganciclovir application. Neither amyloid plaque formation and maintenance nor amyloid-associated neuritic dystrophy depended on the presence of microglia.
    Nature Neuroscience 11/2009; 12(11):1361-3. DOI:10.1038/nn.2432 · 14.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is characterized by numerous pathological abnormalities, including amyloid beta (Abeta) deposition in the brain parenchyma and vasculature. In addition, intracellular Abeta accumulation may affect neuronal viability and function. In this study, we evaluated the effects of different forms of Abeta on cognitive decline by analyzing the behavioral induction of the learning-related gene Arc/Arg3.1 in three different transgenic mouse models of cerebral amyloidosis (APPPS1, APPDutch, and APP23). Following a controlled spatial exploration paradigm, reductions in both the number of Arc-activated neurons and the levels of Arc mRNA were seen in the neocortices of depositing mice from all transgenic lines (deficits ranging from 14 to 26%), indicating an impairment in neuronal encoding and network activation. Young APPDutch and APP23 mice exhibited intracellular, granular Abeta staining that was most prominent in the large pyramidal cells of cortical layer V; these animals also had reductions in levels of Arc. In the dentate gyrus, striking reductions (up to 58% in aged APPPS1 mice) in the number of Arc-activated cells were found. Single-cell analyses revealed both the proximity to fibrillar amyloid in aged mice, and the transient presence of intracellular granular Abeta in young mice, as independent factors that contribute to reduced Arc levels. These results provide evidence that two independent Abeta pathologies converge in their impact on cognitive function in Alzheimer's disease.
    American Journal Of Pathology 08/2009; 175(1):271-82. DOI:10.2353/ajpath.2009.090044 · 4.60 Impact Factor
  • Alzheimer's and Dementia 07/2009; 5(4). DOI:10.1016/j.jalz.2009.04.899 · 17.47 Impact Factor
  • Alzheimer's and Dementia 07/2008; 4(4). DOI:10.1016/j.jalz.2008.05.697 · 17.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus in Alzheimer's disease is burdened with amyloid plaques and is one of the few locations where neurogenesis continues throughout adult life. To evaluate the impact of amyloid-beta deposition on neural stem cells, hippocampal neurogenesis was assessed using bromodeoxyuridine incorporation and doublecortin staining in two amyloid precursor protein (APP) transgenic mouse models. In 5-month-old APP23 mice prior to amyloid deposition, neurogenesis showed no robust difference relative to wild-type control mice, but 25-month-old amyloid-depositing APP23 mice showed significant increases in neurogenesis compared to controls. In contrast, 8-month-old amyloid-depositing APPPS1 mice revealed decreases in neurogenesis compared to controls. To study whether alterations in neurogenesis are the result of amyloid-induced changes at the level of neural stem cells, APPPS1 mice were crossed with mice expressing green fluorescence protein (GFP) under a central nervous system-specific nestin promoter. Eight-month-old nestin-GFP x APPPS1 mice exhibited decreases in quiescent nestin-positive astrocyte-like stem cells, while transient amplifying progenitor cells did not change in number. Strikingly, both astrocyte-like and transient-amplifying progenitor cells revealed an aberrant morphologic reaction toward congophilic amyloid-deposits. A similar reaction toward the amyloid was no longer observed in doublecortin-positive immature neurons. Results provide evidence for a disruption of neural stem cell biology in an amyloidogenic environment and support findings that neurogenesis is differently affected among various transgenic mouse models of Alzheimer's disease.
    American Journal Of Pathology 07/2008; 172(6):1520-8. DOI:10.2353/ajpath.2008.060520 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microglial cells aggregate around amyloid plaques in Alzheimer's disease, but, despite their therapeutic potential, various aspects of their reactive kinetics and role in plaque pathogenesis remain hypothetical. Through use of in vivo imaging and quantitative morphological measures in transgenic mice, we demonstrate that local resident microglia rapidly react to plaque formation by extending processes and subsequently migrating toward plaques, in which individual transformed microglia somata remain spatially stable for weeks. The number of plaque-associated microglia increased at a rate of almost three per plaque per month, independent of plaque volume. Larger plaques were surrounded by larger microglia, and a subset of plaques changed in size over time, with an increase or decrease related to the volume of associated microglia. Far from adopting a more static role, plaque-associated microglia retained rapid process and membrane movement at the plaque/glia interface. Microglia internalized systemically injected amyloid-binding dye at a much higher rate in the vicinity of plaques. These results indicate a role for microglia in plaque maintenance and provide a model with multiple targets for therapeutic intervention.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 05/2008; 28(16):4283-92. DOI:10.1523/JNEUROSCI.4814-07.2008 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study Alzheimer's disease (AD), a variety of mouse models has been generated through the overexpression of the amyloid precursor protein and/or the presenilins harboring one or several mutations found in familial AD. With aging, these mice develop several lesions similar to those of AD, including diffuse and neuritic amyloid deposits, cerebral amyloid angiopathy, dystrophic neurites and synapses, and amyloid-associated neuroinflammation. Other characteristics of AD, such as neurofibrillary tangles and nerve cell loss, are not satisfactorily reproduced in these models. Mouse models that recapitulate only specific aspects of AD pathogenesis are of great advantage when deciphering the complexity of the disease and can contribute substantially to diagnostic and therapeutic innovations. Incomplete mouse models have been key to the development of Abeta42-targeted therapies, as well as to the current understanding of the interrelationship between cerebral beta-amyloidosis and tau neurofibrillary lesions, and are currently being used to develop novel diagnostic agents for in vivo imaging.
    European journal of nuclear medicine and molecular imaging 04/2008; 35 Suppl 1(S1):S70-4. DOI:10.1007/s00259-007-0704-y · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease presents morphologically with senile plaques, primarily made of extracellular amyloid-beta (A beta) deposits, and neurofibrillary lesions, which consist of intracellular aggregates of hyperphosphorylated tau protein. To study the in vivo induction of tau pathology, dilute brain extracts from aged A beta-depositing APP23 transgenic mice were intracerebrally infused in young B6/P301L tau transgenic mice. Six months after the infusion, tau pathology was induced in the injected hippocampus but also in brain regions well beyond the injection sites such as the entorhinal cortex and amygdala, areas with neuronal projection to the injection site. No or only modest tau induction was observed when brain extracts from aged nontransgenic control mice and aged tau-depositing B6/P301L transgenic mice were infused. To further study A beta-induced tau lesions B6/P301L tau transgenic mice were crossed with APP23 mice. Although A beta deposition in double-transgenic mice did not differ from single APP23 transgenic mice, double-transgenic mice revealed increased tau pathology compared to single B6/P301L tau transgenic mice predominately in areas with high A beta plaque load. The present results suggest that both extract-derived A beta species and deposited fibrillary A beta can induce the formation of tau neurofibrillary pathology. The observation that infused A beta can trigger the tau pathology in the absence of A beta deposits provides an explanation for the discrepancy between the neuroanatomical location of A beta deposits and the development and spreading of tau lesions in Alzheimer's disease brain.
    American Journal Of Pathology 01/2008; 171(6):2012-20. DOI:10.2353/ajpath.2007.070403 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have generated a novel transgenic mouse model on a C57BL/6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter element (APPPS1 mice). Cerebral amyloidosis starts at 6-8 weeks and the ratio of human amyloid (A)beta42 to Abeta40 is 1.5 and 5 in pre-depositing and amyloid-depositing mice, respectively. Consistent with this ratio, extensive congophilic parenchymal amyloid but minimal amyloid angiopathy is observed. Amyloid-associated pathologies include dystrophic synaptic boutons, hyperphosphorylated tau-positive neuritic structures and robust gliosis, with neocortical microglia number increasing threefold from 1 to 8 months of age. Global neocortical neuron loss is not apparent up to 8 months of age, but local neuron loss in the dentate gyrus is observed. Because of the early onset of amyloid lesions, the defined genetic background of the model and the facile breeding characteristics, APPPS1 mice are well suited for studying therapeutic strategies and the pathomechanism of amyloidosis by cross-breeding to other genetically engineered mouse models.
    EMBO Reports 10/2006; 7(9):940-6. DOI:10.1038/sj.embor.7400784 · 7.86 Impact Factor
  • Article: P1-097
  • Article: P1-116

Publication Stats

737 Citations
93.25 Total Impact Points

Institutions

  • 2006–2015
    • Hertie-Institute for Clinical Brain Research
      Tübingen, Baden-Württemberg, Germany
  • 2008
    • Novartis
      Bâle, Basel-City, Switzerland
    • Novartis Institutes for BioMedical Research
      Cambridge, Massachusetts, United States
    • University of Tuebingen
      • Hertie Institute for Clinical Brain Research
      Tübingen, Baden-Württemberg, Germany