Junqin He

University of Texas MD Anderson Cancer Center, Houston, TX, United States

Are you Junqin He?

Claim your profile

Publications (13)87.86 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Antivascular therapy has emerged as a rational strategy to improve the treatment of androgen-independent prostate cancer owing to the necessity of establishing a vascular network for the growth and progression of the primary and metastatic tumor. We determined whether recombinant human apolipoprotein(a) kringle V, rhLK8, produces therapeutic efficacy in an orthotopic human prostate cancer animal model. Fifty thousand androgen-independent human prostate cancer cells (PC-3MM2) were injected into the prostate of nude mice. After 3 days, these mice were randomized to receive the vehicle solution (intraperitoneally [i.p.], daily), paclitaxel (8 mg/kg i.p., weekly), rhLK8 (50 mg/kg i.p., daily), or a combination of paclitaxel and rhLK8 for 4 weeks. Treatment with paclitaxel or rhLK8 alone did not show significant therapeutic effects on tumor incidence or on tumor size compared with the control group. The combination of rhLK8 and paclitaxel significantly reduced tumor size and incidence of lymph node metastasis. Significant reduction in microvessel density and cellular proliferation and induction of apoptosis of tumor cells, and tumor-associated endothelial cells, were also achieved. Similarly, PC-3MM2 tumors growing in the tibia showed significant suppression of tumor growth and lymph node metastasis by the combination treatment with rhLK8 and paclitaxel. The integrity of the bone was significantly preserved, and apoptosis of tumor cells and tumor-associated endothelial cells was increased. In conclusion, these results suggest that targeting the tumor microenvironment with the antivascular effect of rhLK8 combined with conventional cytotoxic chemotherapy could be a new and effective approach in the treatment of androgen-independent prostate cancer and their metastases.
    Neoplasia (New York, N.Y.) 04/2012; 14(4):335-43. · 5.48 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Endothelin receptors (ETRs) are often overexpressed in ovarian tumors, which can be resistant to conventional therapies. Thus, we investigated whether blockage of the ETR pathways using the dual ETR antagonist macitentan combined with taxol or cisplatinum can produce therapy for orthotopically growing multidrug-resistant (MDR) human ovarian carcinoma. In several studies, nude mice were injected in the peritoneal cavity with HeyA8-MDR human ovarian cancer cells. Ten days later, mice were randomized to receive vehicle (saline), macitentan (oral, daily), taxol (intraperitoneal, weekly), cisplatinum (intraperitoneal, weekly), macitentan plus taxol, or macitentan plus cisplatinum. Moribund mice were killed, and tumors were collected, weighed, and prepared for immunohistochemical analysis. The HeyA8-MDR tumors did not respond to taxol, cisplatinum, or macitentan administered as single agents. In contrast, combination therapy with macitentan and taxol or macitentan and cisplatinum significantly decreased the tumor incidence and weight and significantly increased the survival of mice and their general condition. Multiple immunohistochemical analyses revealed that treatment with macitentan and macitentan plus taxol or cisplatinum inhibited the phosphorylation of ETRs, decreased the levels of pVEGFR2, pAkt, and pMAPK in tumor cells after 2 weeks of treatment and induced a first wave of apoptosis in tumor-associated endothelial cells followed by apoptosis in surrounding tumor cells. Our study shows that ovarian cancer cells, which express the endothelin axis and are multidrug resistant, are exquisitely sensitive to treatment with a dual ET antagonist and can be resensitized to both taxol and cisplatinum. This combined therapy led to a significant reduction in tumor weight.
    Translational oncology 02/2012; 5(1):39-47. · 3.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In the United States, more than 40% of cancer patients develop brain metastasis. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with conventional radiotherapy and chemotherapy. The growth and survival of metastasis depend on the interaction of tumor cells with host factors in the organ microenvironment. Brain metastases are surrounded and infiltrated by activated astrocytes and are highly resistant to chemotherapy. We report here that coculture of human breast cancer cells or lung cancer cells with murine astrocytes (but not murine fibroblasts) led to the up-regulation of survival genes, including GSTA5, BCL2L1, and TWIST1, in the tumor cells. The degree of up-regulation directly correlated with increased resistance to all tested chemotherapeutic agents. We further show that the up-regulation of the survival genes and consequent resistance are dependent on the direct contact between the astrocytes and tumor cells through gap junctions and are therefore transient. Knocking down these genes with specific small interfering RNA rendered the tumor cells sensitive to chemotherapeutic agents. These data clearly demonstrate that host cells in the microenvironment influence the biologic behavior of tumor cells and reinforce the contention that the organ microenvironment must be taken into consideration during the design of therapy.
    Neoplasia (New York, N.Y.) 03/2011; 13(3):286-98. · 5.48 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Potential treatments for ovarian cancers that have become resistant to standard chemotherapies include modulators of tumor cell survival, such as endothelin receptor (ETR) antagonist. We investigated the therapeutic efficacy of the dual ETR antagonist, macitentan, on human ovarian cancer cells, SKOV3ip1 and IGROV1, growing orthotopically in nude mice. Mice with established disease were treated with vehicle (control), paclitaxel (weekly, intraperitoneal injections), macitentan (daily oral administrations), or a combination of paclitaxel and macitentan. Treatment with paclitaxel decreased tumor weight and volume of ascites. Combination therapy with macitentan and paclitaxel reduced tumor incidence and further reduced tumor weight and volume of ascites when compared with paclitaxel alone. Macitentan alone occasionally reduced tumor weight but alone had no effect on tumor incidence or ascites. Immunohistochemical analyses revealed that treatment with macitentan and macitentan plus paclitaxel inhibited the phosphorylation of ETRs and suppressed the survival pathways of tumor cells by decreasing the levels of pVEGFR2, pAkt, and pMAPK. The dose of macitentan necessary for inhibition of phosphorylation correlated with the dose required to increase antitumor efficacy of paclitaxel. Treatment with macitentan enhanced the cytotoxicity mediated by paclitaxel as measured by the degree of apoptosis in tumor cells and tumor-associated endothelial cells. Collectively, these results show that administration of macitentan in combination with paclitaxel prevents the progression of ovarian cancer in the peritoneal cavity of nude mice in part by inhibiting survival pathways of both tumor cells and tumor-associated endothelial cells.
    Neoplasia (New York, N.Y.) 02/2011; 13(2):167-79. · 5.48 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To test the hypothesis that tumor-associated macrophages (TAMs) enhance the growth and metastasis of human prostate cancer in the bone, we evaluated the effects of decreasing interleukin-6 (IL-6) production by tumor cells and TAMs in a mouse model of bone metastasis. Human PC-3MM2 cells that produce IL-6 were transfected with lentivirus containing IL-6 small hairpin RNA (shRNA) or nonspecific RNA and injected into the tibias of nude mice treated intraperitoneally every 5days for 5weeks with phosphate-buffered saline (PBS), liposomes containing PBS, or liposomes containing clodronate (to decrease the number of macrophages). Transfection of PC-3MM2 cells with IL-6 shRNA significantly decreased cellular expression of IL-6 and the number of TAMs and osteoclasts in bone tumors, which correlated with significant decreases in tumor size, bone lysis, and incidence of lymph node metastasis. Treatment of mice with clodronate liposomes significantly decreased the number of TAMs and osteoclasts in the bone tumors, the expression of IL-6 in the PC3-MM2 cells, and the production of tumor necrosis factor (TNF)-α by TAMs. These findings correlated with a significant decrease in tumor size, bone lysis, and lymph node metastasis. Knocking down IL-6 in tumor cells and decreasing TAMs was associated with the lowest incidences of bone tumors and lymph node metastasis. These results suggest that TAMs enhance the growth of prostate cancer cells in the bone.
    International immunopharmacology 01/2011; 11(7):862-72. · 2.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Inhibiting epidermal growth factor receptor (EGF-R) and vascular endothelial growth factor receptor (VEGF-R) activation with AEE788 can decrease prostate cancer (CaP) growth/progression. We determined whether tumor cells or tumor-associated endothelial cells were the primary target by treating multidrug-resistant (MDR) CaP growing in the prostate of nude mice. MDR human CaP cells with 30-fold increased taxane-resistance were implanted into nude mouse prostates. After 2 weeks, mice were randomized to control, paclitaxel, AEE788, and AEE788/paclitaxel for 10 weeks. Mice were necropsied and tumors stained. AEE788 or AEE788 plus paclitaxel significantly reduced tumor incidence and tumor weight, and eradicated lymph node metastasis. Inhibiting VEGF-R and EGF-R phosphorylation induced apoptosis of tumor-associated endothelial cells causing a second apoptotic wave of surrounding tumor cells. Inhibiting VEGF-R and EGF-R activation on tumor-associated endothelial cells with AEE788 combined with paclitaxel can bypass CaP cell resistance and prevent lymph node metastasis.
    The Prostate 01/2007; 66(16):1788-98. · 3.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Inhibiting phosphorylation of platelet-derived growth factor receptor (PDGFR) by treatment with the PDGFR kinase inhibitor imatinib and the chemotherapeutic agent paclitaxel reduces the incidence and size of human prostate cancer bone lesions in nude mice. Because tumor cells and tumor-associated endothelial cells express activated PDGFR, the primary target for imatinib has been unclear. We selected multidrug-resistant human PC-3MM2 prostate cancer cells (termed PC-3MM2-MDR cells) by culturing them in increasing concentrations of paclitaxel. PC-3MM2-MDR cells were implanted into one tibia of 80 nude mice. Two weeks later, the mice were randomly assigned to receive distilled water (control group), paclitaxel, imatinib, or imatinib plus paclitaxel for 10 weeks (20 mice per group). Tumor incidence and weight, bone structure preservation and osteolysis, and the incidence of lymph node metastasis were determined. The phosphorylation status of PDGFR on tumor cells and tumor-associated endothelial cells and levels of apoptosis were examined with immunohistochemical analyses. Microvessel density was assessed as the number of cells expressing CD31/platelet endothelial cell adhesion molecule 1 (PECAM-1). All statistical tests were two-sided. PC-3MM2-MDR cells were resistant to paclitaxel and imatinib in vitro. Treatment of implanted mice with imatinib plus paclitaxel led to statistically significant decreases in bone tumor incidence (control = 19 mice with tumors of 19 mice total; imatinib plus paclitaxel = four of 18 mice; P < .001), median tumor weight (control = 1.3 g, interquartile range [IQR] = 1.0-1.9; imatinib plus paclitaxel = 0.1 g, IQR = 0-0.3; P < .001), bone lysis, and the incidence of lymph node metastasis (control = 19 of 19 mice total; imatinib plus paclitaxel = three of 18 mice; P < .001). Treatment with imatinib alone had similar effects, and imatinib treatment also inhibited phosphorylation of PDGFR on tumor cells and tumor-associated endothelial cells and increased the level of apoptosis of endothelial cells, but not tumor cells. Treatment with imatinib and more so with imatinib and paclitaxel decreased mean vessel density (three CD31/PECAM-1-positive cells, 95% confidence interval [CI] = 0 to 9; and control group = 38 CD31/PECAM-1-positive cells, 95% CI = 17 to 59) (P < .001), which was followed by apoptosis of tumor cells. Tumor-associated endothelial cells, rather than tumor cells themselves, appear to be the target for imatinib in prostate cancer bone metastasis.
    CancerSpectrum Knowledge Environment 06/2006; 98(11):783-93. · 14.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We determined whether the administration of the tyrosine kinase inhibitor, AEE788, which targets the epidermal growth factor receptor and the vascular endothelial growth factor receptor, alone or in combination with paclitaxel, can inhibit progressive growth of human ovarian carcinoma in the peritoneal cavity of female nude mice. Western blot analysis and immunohistochemical analysis identified the optimal dose and schedule of AEE788 therapy. In several different experiments, paclitaxel-sensitive and paclitaxel-resistant human ovarian carcinoma cells were injected into the peritoneal cavity of nude mice. Seven days later, treatment with saline (control), AEE788 alone, paclitaxel alone, or a combination of AEE788 and paclitaxel began and continued for 45 days when the mice were necropsied. In independent survival experiments, the mice were necropsied when they became moribund. Oral administration of AEE788 inhibited phosphorylation of the epidermal growth factor receptor and vascular endothelial growth factor receptor for up to 48 hours. Treatment with AEE788 plus paclitaxel significantly reduced tumor weight and increased survival of mice implanted with paclitaxel-sensitive cell lines compared with control mice or mice treated with AEE788 alone or paclitaxel alone. In mice implanted with paclitaxel-resistant cells, the combination therapy also significantly reduced tumor weight but did not prolong survival. The combination therapy induced apoptosis of both tumor cells and tumor-associated endothelial cells. The administration of AEE788 and paclitaxel inhibits the progression of human ovarian carcinoma in the peritoneal cavity of female nude mice, in part, by inducing apoptosis of tumor-associated endothelial cells.
    Clinical Cancer Research 08/2005; 11(13):4923-33. · 7.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although gemcitabine has been accepted as the first-line chemotherapeutic reagent for advanced pancreatic cancer, improvement of response rate and survival is not sufficient and patients often develop resistance. We hypothesized that the inhibition of phosphorylation of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) on tumor cells and tumor-associated endothelial cells, combined with gemcitabine, would overcome the resistance to gemcitabine in orthotopic pancreatic tumor animal model. L3.6pl, human pancreatic cancer cells growing in the pancreas, and tumor-associated endothelial cells in microorgan environment highly expressed phosphorylated EGFR, VEGFR, and Akt, which regulates antiapoptotic mechanism. Oral administration of AEE788 (dual tyrosine kinase inhibitor against EGFR and VEGFR) inhibited the phosphorylation of EGFR, VEGFR, and Akt on tumor-associated endothelial cells as well as tumor cells. Although intraperitoneal (i.p.) injection of gemcitabine showed limited inhibitory effect on tumor growth, combination with AEE788 and gemcitabine produced nearly 95% inhibition of tumor growth in parallel with a high level of apoptosis on tumor cells and tumor-associated endothelial cells, and decreased microvascular density and proliferation rate. Collectively, these data indicate that dual inhibition of phosphorylation of EGFR and VEGFR, in combination with gemcitabine, produces apoptosis of tumor-associated endothelial cells and significantly suppresses human pancreatic cancer in nude mice.
    Neoplasia 08/2005; 7(7):696-704. · 5.47 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Prostate cancer cells metastasize to the bone where their interaction with osteoclasts and osteoblasts can lead to alterations in the structure of the bone. We determined whether the systemic administration of the bisphosphonate, zoledronate, could prevent bone lysis and halt the proliferation of human prostate cancer cells injected into the tibia of nude mice. Zoledronate did not affect the in vitro proliferation of human prostate cancer PC-3MM2 cells. The in vivo administration of zoledronate produced significant bone preservation but did not inhibit the progressive growth of PC-3MM2 cells. The systemic administration of STI571 (imatinib mesylate, Gleevec), an inhibitor of phosphorylation of the platelet-derived growth factor receptor, in combination with paclitaxel, produced apoptosis of tumor cells and bone- and tumor-associated endothelial cells. The systemic administration of zoledronate with STI571 and paclitaxel produced a significant preservation of bone structure, a decrease in tumor incidence and weight, and a decrease in incidence of lymph node metastasis. This therapeutic activity was correlated with inhibition of osteoclast function, inhibition of tumor cell proliferation, and induction of apoptosis in tumor-associated endothelial cells and tumor cells. Cancer is a heterogeneous disease that requires multimodality therapy. The present data recommend the combination of a bisphosphonate agent with protein tyrosine kinase inhibitor and an anticycling drug for the treatment of prostate cancer bone metastasis.
    Cancer Research 06/2005; 65(9):3707-15. · 8.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We studied growth factors and their receptors in tumor cells and tumor-associated endothelial cells as the therapeutic targets in colon cancer. Immunohistochemical analysis of 13 surgical specimens of human colon adenocarcinoma revealed that both tumor cells and tumor-associated endothelial cells in 11 of the 13 specimens expressed the epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), EGF receptor (EGFR), phosphorylated EGFR (pEGFR), vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and phosphorylated VEGFR (pVEGFR). HT29 human colon cancer cells growing orthotopically in the cecum of nude mice expressed a high level of EGF, EGFR, pEGFR, VEGF, VEGFR, and pVEGFR. Double-immunofluorescence staining found that tumor-associated mouse endothelial cells also expressed pEGFR and pVEGFR. Tumors in mice treated for 5 weeks with oral AEE788 (an inhibitor of EGFR and VEGFR tyrosine kinase) as a single agent or with CPT-11 alone were smaller (>50%) than those in control mice. Mice treated with the combination of AEE788 and CPT-11 had significantly smaller tumors (P < 0.01) and complete inhibition of lymph node metastasis. AEE788 alone or in combination with CPT-11 inhibited pEGFR, pVEGFR, and phosphorylated Akt expression on tumor-associated endothelial cells as well as on tumor cells. The combination therapy also significantly decreased microvessel density and tumor cell proliferation and increased the level of apoptosis in both tumor cells and tumor-associated endothelial cells. Collectively, these data suggest that the dual inhibition of EGFR and VEGFR signaling pathways in tumor cells and tumor-associated endothelial cells in combination with chemotherapy can provide a new approach to the treatment of colon cancer.
    Cancer Research 05/2005; 65(9):3716-25. · 8.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The activation of the microvascular endothelial cell platelet-derived growth factor (PDGF) receptor (PDGF-R) by PDGF has been implicated in neoplastic angiogenesis. Here, we established cultures of murine bone microvascular endothelial cells and examined their response to stimulation with PDGF BB ligand and to blockade of PDGF-R signaling with the tyrosine kinase inhibitor STI571 (Gleevec). The addition of STI571 to cultures of bone endothelial cells blocked PDGF BB-induced phosphorylation in a dose-dependent manner and completely abrogated the activation of downstream targets Akt and ERK1/2. Coadministration of STI571 and Taxol also induced the activation of procaspase-3 and significant apoptosis. These data suggest that phosphorylation of PDGF-R stimulates survival pathways in bone endothelial cells and that by selectively inhibiting PDGF-R signaling with STI571, the cells are rendered sensitive to Taxol treatment. The therapeutic combination of STI571 and Taxol may be a powerful tool for targeting tumor-associated endothelial cells in the skeletal compartment.
    Cancer Research 07/2004; 64(11):3727-30. · 8.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Once prostate cancer metastasizes to bone, conventional chemotherapy is largely ineffective. We hypothesized that inhibition of phosphorylation of the epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R) expressed on tumor cells and tumor-associated endothelial cells, which is associated with tumor progression, in combination with paclitaxel would inhibit experimental prostate cancer bone metastasis and preserve bone structure. We tested this hypothesis in nude mice, using human PC-3MM2 prostate cancer cells. PC-3MM2 cells growing adjacent to bone tissue and endothelial cells within these lesions expressed phosphorylated EGF-R and PDGF-R alpha and -beta on their surfaces. The percentage of positive endothelial cells and the intensity of receptor expression directly correlated with proximity to bone tissue. Oral administration of PKI166 inhibited the phosphorylation of EGF-R but not PDGF-R, whereas oral administration of STI571 inhibited the phosphorylation of PDGF-R but not EGF-R. Combination therapy using oral PKI166 and STI571 with i.p. injections of paclitaxel induced a high level of apoptosis in tumor vascular endothelial cells and tumor cells in parallel with inhibition of tumor growth in the bone, preservation of bone structure, and reduction of lymph node metastasis. Collectively, these data demonstrate that blockade of phosphorylation of EGF-R and PDGF-R coupled with administration of paclitaxel significantly suppresses experimental human prostate cancer bone metastasis.
    Cancer Research 07/2004; 64(12):4201-8. · 8.65 Impact Factor